S-Cube Research Challenges on „Quality Prediction“

November 22, 2011
Barcelona, Spain
Usage Settings for Online Failure Prediction

- **Preventive Adaptation**
 - A local failure (deviation) occurs
 - Will it lead to an external failure?
 - If “yes”: Repair/compensate local failure (deviation) to prevent external failure

- **Proactive Adaptation**
 - Is local failure/deviation imminent (but did not occur)?
 - If “yes”: Modify system before local failure (deviation) actually occurs
Key Challenges for Online Failure Prediction

RC1 - How to make prediction techniques **timely**?

- Time available for prediction & repairs/changes is limited
 - Especially considering the need to check adaptation decision during run-time (cf. session 1)
- If prediction is too slow, not enough time to adapt / get decision

RC2 - How to make prediction techniques **accurate**?

- **Unnecessary adaptations** can lead to
 - **higher costs** *(e.g., use of expensive alternatives)*
 - **delays** (possibly leaving less time to address real faults)
 - **follow-up failures** *(e.g., if alternative service has severe bugs)*
- **Missed proactive adaptation opportunities** diminish the benefit of proactive adaptation
 (e.g., because reactive compensation actions are needed)
RC1 - How to make prediction techniques timely?

- **RC1.1** – How can we predict the point in time when the predicated failure will impact? This will allow us to determine the time-span that we have for adaptation and thus will influence the decision on the type of adaptation strategy to select.

- **RC1.2** – How to relate short-time prediction (“online” / adaptation) with long-term prediction (evolution)? I.e., how does online prediction relate to the more traditional prediction of system characteristics?
RC2 - How to make prediction techniques accurate?

- **RC2.1** - What are the right metrics for measuring accuracy?
 E.g., contingency table metrics (precision / recall) vs. error

- **RC2.2** - How to incorporate the notion of Quality of Experience (QoE) considering diverse stakeholders?
 E.g., accuracy may be different for personal / professional use

- **RC2.4** – What are the relevant “external” factors that are needed to contextualize the predictions?
 E.g., if fast/easy adaptation mechanisms, less accuracy needed

- **RC2.3** - How to incorporate cost models?
 E.g., even if wrong prediction, overall costs may be negligible

- **RC2.4** - When to assess accuracy?
 E.g., post mortem vs. online
3. Proactive Adaptation / Prediction
* Challenges from S-Cube Workshop *

a. Concepts, techniques and tools for timely quality prediction, including predicting the point in time when a failure will impact/occur (cf. RC1) -- Yagil

b. Differentiating and correlating short-time predictions (“online” / adaptation) with long-term predictions (evolution) -- Annapaola

c. Metrics, techniques and tools for measuring the accuracy of quality predictions (cf. RC2) -- Andreas

d. Concepts and factors relevant for contextualizing accuracy, including cost models, QoE, as well as post-mortem vs. online – Andreas

e. Fully-automated processes for assurances of service-oriented systems in order to architect resilience against “unknown” situations and for dealing with rare events – Rogerio

f. Concepts, models and algorithms for prediction of quality of heterogeneous (real-world and IT) service-oriented systems, integrating proactive Complex-Event-Processing with Quality Prediction for SOA – Andreas

g. Strategies and techniques for handling big data (huge number of events / high frequency of events) during prediction; e.g., sampling from millions of data points arriving per second -- Yagil

h. Quality assurance techniques to prevent “run-time” design decisions / adaptations to lead to inconsistent situations – Andreas

i. Techniques for IaaS performance prediction beyond traditional workload prediction -- Chi-Hung