
!"#$%&'("))*)$%&+,&-./012&

!"#$%& '()*+,)-./.-&0 123"40 +%56"7%8%9#30 :;70 3%$:)<%2$"9=0 3%7>"4%30 29? 0

?%4"3";9036@@;7#0:;70$;42$02?2@#2#";9

,6#<;73& AB+A,C0DE!,FAC0!GH

I?"#;7& *%29)J;6"30K2L2#0MAB+A,N

+%>"%O%73& P2Q7"L";0D"$>%3#7"0M'B+N

R$">"%701272"30MAB+A,N

A?%9#":"%7& (%$">%72Q$%0S'()*+,)-./.-

!T@%& (%$">%72Q$%

U%73";9& V

(2#%& W274<0V6C00-XXY

D#2#63& P"92$

'$233& IZ#%792$

!"#$%&

345%6#")&3)"789):&#$;&3<:%)*:&+)%64"= '&()*&+,%(&-.#'

!"#"$%&%#'()*&&"+,

>$)&45&%?)&(4#@:&45&3ABCD)&8:&%4&@44=&54"&()$)"#@&:4@C%84$:&D<&8$%)("#%8$(&"):)#"9?&#()$;#:&5"4*&;87)":)&

"):)#"9?&#")#:E&:C9?&#:&DC:8$)::&F"49)::):E&:)"789)A4"8)$%);&#$;&("8;&94*FC%8$(G&H?)&64"@;&45&6)D&

:)"789):&#@")#;<&F"478;):&:4@C%84$:&54"&94*F@)I&C:)"&%#:=:G&H?)&6)D&:)"789)&*4;)@&8:&D#:);&4$&%?"))&

#9%4":J&#&:)"789)&F"478;)"E&#&:)"789)&")KC):%)"&#$;&#&:)"789)&D"4=)"G&H?)")&#")&#@:4&6)@@&):%#D@8:?);&#$;&

68;)@<&C:);&%)9?$4@4(8):&%?#%&)$?#$9)&%?)&94@@#D4"#%84$&45&%?):)&%?"))&F#"%8):&%4&5C@58@&:)"789)&)I)9C%84$:&

")KC8");&D<&C:)":G&H?)&$)6@<&)*)"(8$(&;)*#$;:&45&C:)":&#$;&"):)#"9?)":&9#@@&54"&)IF#$;8$(&%?8:&:)"789)&

4;)@&68%?&DC:8$)::A4"8)$%);&C%8@8L#%84$&M#(")))$%&?#$;@8$(NE&:CFF4"%&54"&?C*#$AF"478;);&#$;&

94*FC%#%84$A8$%)$:87)&:)"789):G&H?8:&)74@C%84$&#@:47)9%:&%?)&:)"789)&8$5"#:%"C9%C")O&$)6&94*F4$)$%:&

#FF)#"&%?#%&$));&%4&F"478;)&:)@5AP&4F)"#%84$G&

H?)&FC"F4:)&45&%?8:&;49C*)$%&8:&%4&9#F%C")&%?)&D#:89&")KC8")*)$%:&54"&:)@5A?)#@8$(&#$;&;)98:84$&:CFF4"%&

8$&:)"789)&)I)9C%84$E&;)F@4<*)$%&#$;&"C$%8*)&*#$#()*)$%&54"&:)"789):&&8$9@C;8$(&94")&:)"789):&:C9?&#:&

;8:947)"<&#$;&")(8:%"8):G

B4$9)"$8$(&:)"789)&)I)9C%84$E&6)&;):9"8D)&6?#%&=8$;&45&5C$9%84$#@8%8):&#$;&%44@:&:?4C@;&D)&F"478;);&#%&

%?)&8$5"#:%"C9%C")&@)7)@&8$&4";)"&%4&D)&#D@)&%4&8*F@)*)$%&#&:)@5A?)#@8$(&:)"789)G&Q)&"):%"89%&%?)&:94F)&45&

%?8:&;49C*)$%&%4&%?)&#;#F%#%84$&45&4$)&:)"789)E&$4%&45&#&944";8$#%);&:)%&45&:)"789):G

B4$9)"$8$(&;)F@4<*)$%&#$;&"C$A%8*)&*#$#()*)$%E&6)&)$78:84$&#&94$9)F%C#@&#"9?8%)9%C")&54"&3R'A

D#:);&4$A;)*#$;&:)"789)&F"478:84$8$(&#$;E&D#:);&4$&%?8:&5"#*)64"=E&%?"))&*#8$&5C$9%84$#@8%8):&#")&

:)F#"#%);J&$)(4%8#%84$E&D"4=)"8$(&#$;&;)F@4<*)$%G&H?)&;49C*)$%&8$7):%8(#%):&%?)&")KC8")*)$%:&8$&

;)%#8@:&54"&)#9?&45&%?):)&58)@;:G

H?8:&;49C*)$%&*#8$@<&#;;")::):&H?")#;:&B.&#$;&B-&45&%?)&QS&-G2&"):)#"9?&#"9?8%)9%C")&#$;&&F#"%@<&

#FF@8):&%4&'.&#$;&T.G&3))&#@:4&%?)&94*F#$84$&;)@87)"#D@)&BUAVW'A-G2G2&6?89?&#;;")::):&:)"789)&

;8:947)"<&#$;&")(8:%"8):&MH?")#;&'-E&'2E&T-&#$;&T2NG&B2&68@@&D)&#;;")::);&8$&;)@87)"#D@)&BUAVW'A

-G2G1G

';@T7"=<#0[0-XX\0QT0#<%0D)'G1I04;93;7#"680]0,$$07"=<#307%3%7>%?.

!<%07%3%274<0$%2?"9=0#;0#<%3%07%36$#30<2307%4%">%?0:69?"9=0:7;80#<%0I67;@%290';8869"#T^30D%>%9#<0P728%O;7_0K7;=7288%0

PK`a-XX`)-XV/069?%70=729#02=7%%8%9#09b0-Vcd\/0MD)'6Q%N.

!"#$%&

345%6#")&3)"789):&#$;&3<:%)*:&+)%64"= '&()*&+,%(&-.#'

!%&-%+.(/0('1%()23*-%(4/#./+'5*&6

X$87)":8%<&45&UC8:DC"(AY::)$&MB44";8$#%4"N !)"*#$<

H8@DC"(&X$87)":8%< +)%?)"@#$;:

B8%<&X$87)":8%<&R4$;4$ XGZG

B4$:8(@84&+#L84$#@)&;)@@)&W89)"9?) [%#@<

B)$%)"&54"&398)$%8589&#$;&H)9?$4@4(89#@&W):)#"9? [%#@<

H?)&\")$9?&+#%84$#@&[$:%8%C%)&54"&W):)#"9?&8$&B4*FC%)"&398)$9)&#$;&B4$%"4@ \"#$9)

R)"4&A&H?)&["8:?&345%6#")&Y$(8$))"8$(&W):)#"9?&B)$%") [")@#$;

S4@8%)9$894&;8&]8@#$4 [%#@<

]H'&3^H'Z[&_&B4*FC%)"&#$;&'C%4*#%84$&W):)#"9?&[$:%8%C%) `C$(#"<

a8)$$#&X$87)":8%<&45&H)9?$4@4(< 'C:%"8#

X$87)":8%b&B@#C;)&T)"$#";&R<4$ \"#$9)

X$87)":8%<&45&B")%) !"))9)

X$87)":8;#;&S4@8%b9$89#&;)&]#;"8; 3F#8$

X$87)":8%<&45&3%C%%(#"% !)"*#$<

X$87)":8%<&45&`#*DC"(!)"*#$<

a"8c)&X$87)":8%)8%&'*:%)";#* +)%?)"@#$;:

7*-85.1%9()23*-%(9/4*&%#'.(
'@@&FCD@89&3ABCD)&;)@87)"#D@):&#")#8@#D@)&5"4*&%?)&3ABCD)&Q)D&S4"%#@&#%&%?)&54@@468$(&XWRJ&
&

?%%FJdd666G:A9CD)A$)%64"=G)Cd"):C@%:d;)@87)"#D@):d&

';@T7"=<#0[0-XX\0QT0#<%0D)'G1I04;93;7#"680]0,$$07"=<#307%3%7>%?.

!<%07%3%274<0$%2?"9=0#;0#<%3%07%36$#30<2307%4%">%?0:69?"9=0:7;80#<%0I67;@%290';8869"#T^30D%>%9#<0P728%O;7_0K7;=7288%0

PK`a-XX`)-XV/069?%70=729#02=7%%8%9#09b0-Vcd\/0MD)'6Q%N.

:1%()23*-%(;%85<%+"-8%()%+5%.

=5.5/#("#9(>-?%4'5<%.(/0()23*-%

H?)& 345%6#")& 3)"789):& #$;& 3<:%)*:&+)%64"=& M3ABCD)N& 68@@&):%#D@8:?& #& C$858);E&*C@%8;8:98F@8$#"<E&

78D"#$%& "):)#"9?& 94**C$8%<& 6?89?& 68@@&)$#D@)& YC"4F)& %4& @)#;& %?)& :45%6#")A:)"789):& ")74@C%84$E&

?)@F8$(& :?#F)& %?)& :45%6#")A:)"789)& D#:);& [$%)"$)%&6?89?& 8:& %?)& D#9=D4$)& 45& 4C"& 5C%C")& 8$%)"#9%87)&

:498)%<G

T<& 8$%)("#%8$(& ;87)":)& "):)#"9?& 94**C$8%8):E& 3ABCD)& 8$%)$;:& %4& #9?8)7)& 64"@;A68;)& :98)$%8589&

)I9)@@)$9)&8$&#&58)@;&%?#%&8:&9"8%89#@&54"&YC"4F)#$&94*F)%8%87)$)::G&3ABCD)&68@@Ϣ*F@8:?&8%:*:&

D<&*))%8$(&%?)&54@@468$(&4Dc)9%87):J

• W)A#@8(8(E& ")A:?#F8$(& #$;& 8$%)("#%8$(& "):)#"9?& #()$;#:& 45& =)<& YC"4F)#$& F@#<)":& 5"4*&

;87)":)& "):)#"9?& #")#:& #$;& D<& :<$%?):8L8$(& #$;& 8$%)("#%8$(& ;87)":858);& =$46@);()E& %?)")D<&

):%#D@8:?8$(&#& @4$(A@#:%8$(&54C$;#%84$&54"&:%))"8$(&"):)#"9?&#$;&54"	?8)78$(&8$$47#%84$&#%&

%?)&?8(?):%&@)7)@G

• [$#C(C"#%8$(&#&YC"4F)A68;)&94**4$&F"4("#*&45&);C9#%84$&#$;&%"#8$8$(&54"&"):)#"9?)":&#$;&

8$;C:%"<&%?)")D<&9")#%8$(&#&94**4$&9C@%C")&%?#%&68@@&?#7)&#&F"454C$;&8*F#9%&4$&%?)&5C%C")&45&

%?)&58)@;G

• Y:%#D@8:?8$(&#&F"4A#9%87)&*4D8@8%<&F@#$&%4&)$#D@)&9"4::A5)"%8@8:#%84$&#$;&%?)")D<&54:%)"8$(&%?)&

8$%)("#%84$&45& "):)#"9?&94**C$8%8):&#$;& %?)&):%#D@8:?*)$%&45& #& 94**4$&:45%6#")& :)"789):&

"):)#"9?&9C@%C")G

• Y:%#D@8:?8$(& %"C:%& ")@#%84$:?8F:& 68%?& 8$;C:%"<& 78#& YC"4F)#$& H)9?$4@4(<& S@#%54"*:&

M:F)98589#@@<& +Y33[N& %4& #9?8)7)& #& 9#%#@<%89&)55)9%& 8$& :?#F8$(& YC"4F)#$& "):)#"9?E&

:%")$(%?)$8$(&8$;C:%"8#@&94*F)%8%87)$)::&#$;&#;;")::8$(&*#8$&:498)%#@&9?#@@)$():G

• U)58$8$(&#&D"4#;)"&"):)#"9?&78:84$&#$;&F)":F)9%87)&%?#%&68@@&:?#F)&%?)&:45%6#")A:)"789)&D#:);&

[$%)"$)%&45&%?)&5C%C")&#$;&68@@c)@)"#%)&)94$4*89&("46%?&#$;&8*F"47)&%?)&@878$(&94$;8%84$:&

45&YC"4F)#$&98%8L)$:G

3ABCD)&68@@&F"4;C9)&#$&8$%)("#%);&"):)#"9?&94**C$8%<&45&8$%)"$#%84$#@&")FC%#%84$&#$;c@#8*&%?#%&

68@@&?)@F&;)58$)& %?)&5C%C")&:?#F)&45& %?)&58)@;&45&:45%6#")&:)"789):&6?89?& 8:&45&9"8%89#@& 54"&YC"4F)#$&

94*F)%8%87)$)::G& 3ABCD)& 68@@& F"478;)& :)"789)&)$(8$))"8$(& *)%?4;4@4(8):& 6?89?& 5#98@8%#%)& %?)&

;)7)@4F*)$%E&;)F@4<*)$%&#$;&#;cC:%*)$%&45&:4F?8:%89#%);&?<D"8;&:)"789)AD#:);&:<:%)*:&%?#%&9#$$4%&

D)&#;;")::);&68%?&%4;#<e:&@8*8%);&:45%6#")&)$(8$))"8$(&#FF"4#9?):G&3ABCD)&68@@&5C"%?)"&8$%"4;C9)&#$&

#;7#$9);& %"#8$8$(& F"4("#*& 54"& "):)#"9?)":& #$;& F"#9%8%84$)":G& \8$#@@<E& 3ABCD)& 8$%)$;:& %4& D"8$(&

:%"#%)(89& #;;);& 7#@C)& %4& YC"4F)#$& 8$;C:%"<& D<& C:8$(& 8$;C:%"<& D):%AF"#9%89)& *4;)@:& #$;& D<&

8*F@)*)$%8$(&"):)#"9?&"):C@%:&8$%4&F8@4%&DC:8$)::&9#:):&#$;&F"4%4%<F)&:<:%)*:G

3ABXTY&*#%)"8#@:&#")#8@#D@)&5"4*&XWRJ&?%%FJdd666G:A9CD)A$)%64"=G)Cd

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.2

Contents

1 Introduction 2
1.1 WP Vision . 2
1.2 Outline . 3

2 Definitions 4
2.1 Services in the large . 4
2.2 Local adaptation . 5
2.3 Self-healing . 6

3 Illustrative example 8

4 Requirements for Adaptation and self-* in Service Execution 10
4.1 Requirements for a local adaptation and self-healing infrastructure 10
4.2 Requirements for Monitoring . 11
4.3 Requirements for decision support . 12
4.4 Requirements for definitions of strategies . 12
4.5 Requirements for planning . 13
4.6 Requirement for the support of concrete actions 14
4.7 Requirement for Integration level . 15
4.8 Example of integrating self-adaptation in a master/worker framework 15

5 Requirements for self-healing and decision support in deployment and run-
time management 18
5.1 Introduction . 18
5.2 Requirements for Agreement Negotiation . 19
5.3 Requirements for Service Brokering . 21
5.4 Requirements for Service Deployment . 24

5.4.1 Deployment requirements to support self-healing services 25
5.4.2 Deployment requirements for local adaptation 27
5.4.3 Deplyment requirements for the adaptation in the infrastructure layer . . 27
5.4.4 Deployment requirements for interface changing adaptation 28

5.5 Summary of requirements . 28

6 Conclusions 28

External Final Version 1, Dated March 16, 2009 1

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.2

1 Introduction

1.1 WP Vision

The heterogeneity, dynamicity and ever-growing size of distributed infrastructures that will
support future SBAs have reached a complexity that cannot be overseen and controlled only by
humans anymore. There is an evident need for systems that are able to maintain and control
themselves (at least partly) in an autonomic manner. We assume an environment of hetero-
geneous services (entities) e.g. any type of computing resources, storage devices, application
servers, load-balancers, and resource brokers.

Figure 1: WP-JRA-2.3 Research Architecture

In Figure 1, we give an overview of the overall research architecture of WP-JRA-2.3: research
on service infrastructures is structured in three threads, Service Discovery, Service Registries and
Service Execution. To each of those categories, a number of concrete research topics (research
directions) are denoted:

– Service Discovery - Service discovery is a fundamental element of service-oriented archi-
tectures. Other, and more complex, services heavily rely on it to enable the execution of
service-based applications. Current discovery mechanisms are not well prepared to deal
with the huge number of Internet-scale service ecosystems. Novel discovery mechanisms
must be able to deal with millions (or even billions) of services. Additionally, these dis-
covery mechanisms need to consider new constraints, which are not prevalent today, such
as Quality of Experience requirements and expectations (feedback) of users, geographi-
cal constraints, pricing and contractual issues, or invocability (not every service can be
invoked and used by every client).

– Service Registry Research Thread- service registries are tools for the implementation of
loosely-coupled service-based systems. Current registries such as UDDI are not fault-
tolerant. They are centrally managed entities, which do not scale well and do not offer
support for rich service descriptions. With the advent of the Internet-scale service ecosys-
tems a number of new challenges for the next generation of registries will arise. In such

External Final Version 1, Dated March 16, 2009 2

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.2

systems, fault tolerance and scalability of registries is of eminent importance. Autonomic
registries need to be able to form loose federations, which are able to work 24/7, in spite
of heavy load or faults. Additionally, a richer set of metadata (data describing services)
is needed for services in such ecosystems, in order to capture novel aspects such as self-
adaptation, user feedback evaluation, or Internet-scale process discovery. Another research
topic is the dissemination of metadata: the distributed and heterogeneous nature of these
ecosystems asks for new dissemination methods between physically and logically disjoint
registry entities, which work in spite of missing, untrusted, inconsistent and wrong meta-
data.

– Runtime Environment Research Thread- the obvious need for automatic, autonomic ap-
proaches have been addressed but either the scope is slightly different or the thoroughness,
completeness of the solution does not fully meet the requirements of Internet-scale service
ecosystems. Current adaptation methods focus on components and put little emphasis on
services. Opposed to the self-* idea, they are merely targeting one or few reflective proper-
ties, typically some form of fault tolerance. Fault tolerance itself is usually a less complete
solution than self-healing. Most approaches are targeted at short-term remedies, typically
eliminating one problem. They are also acting locally (both spatial and temporal), not
taking into consideration the overall state of the system or the chain of potential/possible
causes and actions. There are various adaptation mechanisms for initial/bootstrapping
configuration but there are few solutions that solve run-time dynamic adaptation by re-
configuration. As opposed to current approaches we envision an infrastructure that is able
to adapt autonomously and dynamically to changing conditions. Such adaptation should
be supported by past experience (learning), should be able to take into consideration a
complex set of conditions and their correlations, act proactively to avoid problems before
they can occur and have a long lasting, stabilizing effect. All these three research topics
possess a common feature that is characteristics of the entire research thread: policies for
adaptation, and a knowledge base for adaptation strategies are defined.

1.2 Outline

Our main goal is to provide autonomic behavior for services, and to maintain the autonomic
behavior of interoperable, cooperative services in a seamless and effective way. This deliverable
involves establishing methods for problem identification, analysis of symptoms, repair and heal-
ing, specifying high-level policies and objectives and planning the execution according to the
chosen adaptation policies. Here, we refer to an application as a composition of services. We
consider three levels of adaptation. At the lowest level we consider the self-adaptation of one
service, at the second level we consider adaptation inside an application to satisfy its specific
needs and at the highest level we investigate the adaptation of several applications, running at
the same time.The requirements for the first level of adaptation is described in this document.

There are certain cases when the adaptability, self-healing or other self-* properties of a
service (or the service infrastructure) can be established in a coarsely controlled way by deploying
and/or decommissioning services in an on demand, dynamic way. It is also strongly related to
the service lifecycle and obviously, applies to the initial deployment of services. Deployment and
runtime management (see Figure 1) deals with on-demand, dynamic provision of services, either
due to temporal, spatial or semantic requirements. We envision a conceptual architecture that
is able to provide such dynamic deployment and runtime management. Based on the concept,
we separated three main functional phases. (i) There must be a negotiation phase when it is
specified, what service is to be invoked and what are the conditions and constraints (temporal
availability, reliability, performance, cost, etc.) of its use. (ii) Subsequently, in the brokering
phase, an agent must select available resources that can be allocated for providing the services.

External Final Version 1, Dated March 16, 2009 3

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.2

These resources can be provided in many ways: clouds (virtualized resources configured for a
certain specification and service level guarantees), clusters or local grids (distributed computing
power with limited service level guarantees) or volunteer computing resources (no service level
guarantees at all). (iii) Finally, the service (or instances of a service) must be deployed on
the selected resources in an automatic manner. In the scope of this report we analyze the
requirements for decision making in (meta)negotiation, (meta)brokering and deployment layers
of the architecture.

In this document we describe the challenges for self-* in service execution (C1) and deploy-
ment and management issues (C2) in more details. These challenges are highlighted in Figure 1.
Applications of self-* in service registry and service discovery are studied in this WP but are
not described specifically here. Multi-level self-adaptation (C3) will be studied in more details
in CD-JRA-2.3.8. The other research threads A and B are described in CD-JRA-2.3.3. Note
that this document purposefully excludes some aspects of services infrastructure, since they are
out of scope of the WP: service composition is handled by WP JRA-2.2, and has therefore been
excluded here; similarly, we do not consider implementation processes for service engineering,
since this is the focus of WP JRA-1.1. Security as a crosscutting concern is not studied in this
activity.

The remaining of the paper is organized as follows: Section 2 presents some definitions and
Section 3 gives a typical use case of services in the ecosystem of services. This example is
used along the deliverable and will be used during our research works. Section 4 presents local
adaptation and self-healing requirements for service execution. Section 5 is devoted to present
deployment and runtime management requirements. Section 6 summarizes these requirements
as research challenges and future works.

2 Definitions

2.1 Services in the large

We consider the underlying architecture as being composed of machines capable of running one
of more service. A machine has the ability to communicate with other machines in order to
allow the service(s) to be invoked remotely and in order to be able to invoke remote services
(we rely on a communication backbone but we don’t make any precise assumptions on its
capabilities). A machine can range from a handheld device such as a smartphone to a cluster
in a large data or computing center, including personal computers and laptops. Machines are
running an operating system and/or some middleware providing all the necessary core services
needed such as communication facilities and resource brokering.

The infrastructure supporting this ecosystem is distributed meaning that system and mid-
dleware do not provide seamless data sharing, there exists delays when communicating between
machines and there may be some failures among machines. The infrastructure will be considered
on a large-scale basis (e.g. internet wide or even more including ad-hoc networks, etc.). This
ecosystem of services is not only populated by services, business processes and other computer
“stuff”. -centered but may also includes human beings.

Figure 2 represents the different dimensions of this ecosystem. Within the distributed di-
mension, adaptation of services, including self-healing can be coordinated (e.g. services should
be able to agree before any adaptation). In the large-scale dimension, services should be able to
adapt themselves independently and locally. Self-healing is mainly for non-human dimensions,
while in the Human-centered dimension, adaptation should be controlled (e.g. non decided by
automated processes alone). The big challenge is to be able to take into account these three
dimensions at a time.

External Final Version 1, Dated March 16, 2009 4

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.2

Figure 2: Domains of Adaptation

2.2 Local adaptation

In this section we present different definitions of locality. The goal is to have some clear defini-
tions of “local adaptation”.

Underlying infrastructure We call a node, a piece of hardware with one of more proces-
sor(s), memory, disk and network access. Nodes can range from simple PCs to high performance
servers. A cluster is a small network of nodes. High performance networks are often used in
clusters.

The process executing a service and its adaptation mechanisms have to be supported by the
runtime environment. Any execution of a service within the architecture involved may be either
supported on one or more node, inside one or more clusters. Figure 3 explains how local and
distributed executions of one service can be performed on the runtime environment.

– Local execution: all the actions of a service are executed on the same node.

– Distributed execution: the actions of a service are executed at least on two distinct nodes
belonging to the same cluster.

– Inter-cluster distributed execution: the actions of a service are executed at least on two
distinct nodes belonging to different clusters.

In addition to the local and distributed executions of a service mentioned earlier, a service
may be also classified with respect to its parallelism. A service is sequential if it is composed of
only one process and one thread (such a service has only the ability to execute one instruction
at a time). In contrast, a parallel service is composed of more than one thread or process. These
concepts are complementary to the other ones related to the local and distributed executions.

A sequential service is bounded to use one node at a time (local sequential execution), for
instance, it may use the node number 1 from the Cluster 1 (see Figure 3).

A parallel service have the ability to use more than one processor and may also have the
ability to run on more than one node. For example, we have represented a parallel service running

External Final Version 1, Dated March 16, 2009 5

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.2

Figure 3: Local and distributed executions of one service

on the Cluster 2 and using the nodes numbers 2 and 3. This is a distributed parallel execution.
Ultimately, a service could also use more than one cluster to execute its parallel code by using the
nodes from Cluster 1, 3 and 4, thereby taking advantage of a inter-cluster distributed execution.
This is the usual scenario for compute intensive services such as numerical simulation or a
bioinformatics software when using resources distributed among different companies or research
labs.

On the opposite, in case of a lack of resources, such a service has the ability to run on one
node. This is a local parallel execution.

Services A service can be a composition of services or it can be a atomic service (i.e., a
service that does not call any other service). In this document we consider both kinds of
services. Thereby, such a single service performs a local adaptation when its adaptation has
no coordination with other services. This does not mean that the local adaptation of one
service may not affect other services. Even though it may perfectly occur, we do not consider
the coordination of the adaptation process in this document. Furthermore, it is important to
remark that the meaning of local here is different from the previous definition related to the
underlying architecture. In this document we refer to local adaptation with the service point of
view.

2.3 Self-healing

With the Internet rapidly growing in the nineties and the first “computer viruses” becoming a
threat, researchers such as S. Forrest, A. Somyaji, and S.A. Hofmeyr, inspired by the capabilities
of Mother Nature’s immune system, began to explore similarities between the defense mecha-
nisms of organisms and computer systems [9]. As technology advanced over the years, from
these early attempts to copy natures immune system features for “self-intrusion-detection”, the
spectrum eventually broadened to the research field of self-*. Self-healing part of self-* is one of
the sub-fields still closely related to the immune system analogy.

A comprehensible and contemporary definition of self-healing can be found in [11]:“the key
focus or contrasting idea as compared to dependable systems is that a self-healing system should
recover from the abnormal (or “unhealthy”) state and return to the normative (“healthy”) state,
and function as it was prior to disruption.” A self-healing system shall tend to become sound
with infrequent faults, though, accept temporarily malfunctions. More formal, the mean time
between faults (MTBF) shall be much larger than the mean time to repair/recover (MTTR).
Overall, a “fit” system is desired running for a maximum possible term. Apart from the two
obvious states “healthy” and “unhealthy” transitions to a third state “degraded”, modeled after

External Final Version 1, Dated March 16, 2009 6

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.2

Figure 4: State diagram of self-healing

natures latent period, are introduced referring to a system on the verge of “unhealthy”, however,
hidden to the participants. This is also known as the “The Fuzzy Zone”.

Figure 4 represents the previously described self-healing state diagram including the tran-
sitions labeled with the accompanied actions. The challenges of introducing self-healing into a
system newly developed or already existing are twofold. On the one hand, the state of “health”
or more precisely what presents the boundaries of “healthy” in the system must be defined
and agreed. The challenges here are not only a reliable monitoring and correct interpretation
of sensed data but also the possible variation and discrepancy of the “health” definition in
changing and/or evolving systems and the opinion on that matter by the different stakeholders.
On the other hand, recovery complexity increases with system size. Therefore, approaches are
various and include off-line related “healing” by allowing a possibly longer “degraded” state
while estimating the appropriate recovery strategies with time consuming methods of artificial
intelligence [5] but also more on-line methods with short or no “degraded” state by cutting off
the “infected” parts of the system during repair and designate a temporary substitute [10].

Following an example of self-healing in the context of the NavInc. case study, we refer to
the implementation of the service running on the GPS car unit as HealthyNavInc. The task
of HealthyNavInc is to monitor the fuel-status of the corresponding car in comparison to the
distance of the next gas station(s) on the current computed route. The three states are easily
identified:

1. “healthy”: The fuel level in the car is sufficient to reach the closest known patrol station.

2. “unhealthy”: The car has stopped because of the lack of fuel.

3. “degraded”: The systems estimations indicate that the fuel level is to low to reach the
next known patrol station, but the car is sill running.

Obviously, we assume that the starting state is “healthy” with the system in total “health”.
Further, assuming a perfectly running system transitions to the undesirable states are unlikely.
However, let us assume the dominating stakeholder, namely the driver, despite of Healthy-
NavInc’s warnings, decides to take an unexpected route. After revising the decision Healthy-
NavInv could find itself quite instantaneous in the “degraded” state and tries by any means to
return to “healthy” state and back to a safe route where a gas station is reachable. This could

External Final Version 1, Dated March 16, 2009 7

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.2

be as simple as a “give-in” by the HealthyNavInv and requesting the driver’s intervention or
estimate alternatives by any information sources available. This could also include just estab-
lished ad-hoc information services and in the best-case lead to a newly detected gas station in
range.

The requirements of self-healing in S-Cube offer a great chance for collaboration with other
WPs. As aforementioned, at the beginning we must differentiate as precise as possible the ranges
between “healthy” and “unhealthy”. Here the opinions of all stakeholders found in the various
layer of S-Cube must be evaluated and respected most evident, i.e., JRA-1.3 End-to-End Quality
Provision and SLA Conformance with their SLAs and JRA-2.1 Business Process Management
with their KPIs. Wherein the infrastructure itself must be considered as an important stake-
holder. Its capabilities to monitor, adapt and evolve limit the desires of the upper layers. In
this matter, a strong collaboration with JRA-1.2 Adaptation and monitoring is required and an
integration of the results of their research must be considered. Regarding the applied strategies
for self-healing we might consider an adoption of both of the previously described on- and off-line
integration as we consider local and multilevel adaptation.

Self-healing can apply to one service or to a set of services. In the case of one service,
self-healing is a special case of local adaptation.

3 Illustrative example

Shared Metadata

NavInc.

NavInc.
Service
Registry

E
n

te
rp

ri
s
e

 S
e

rv
ic

e
 B

u
s

Inhouse Services

CRM
Services

ERP
Services

Order
Management

Services

Billing
Services

GPS
Operating
Services

Travel Planning

Hotel Services

Restaurant
Services

Ad Hoc
Service

IoS Registry
Service

Auto Inc.

Supply Chain Services

ERP
Services

Inventory
Management

Services

Payment
Services

...

Navigation
Services

Figure 5: Illustrative example

External Final Version 1, Dated March 16, 2009 8

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.2

We consider a fictional producer of car GPS units as described in deliverable CD-JRA 2.3.3.
The whole case study is also available in the CD-IA-3.1.1 deliverable.

In addition to the services presented in this deliverable, we consider navigation services such
as safety warnings, real-time traffic and road condition information, weather reports, which are
now standard features of GPS units. We also consider that ad hoc services may appear and
disappear both for safety or information purpose.

In the scenario, we consider that the GPS car unit allows the computation of the route and
regular calls to some base station supporting access to standard information services. In case of
any problem or accident reported by these services, the GPS unit displays a message and may
recompute a new route. In case of a geographically close event, some ad hoc services hosted by
maintenance vehicles, by the police teams or by other drivers may appear and the GPS unit
may connect to these new services in order to get more precise information. Because most of
the time traffic conditions are not that bad, we think of other ad hoc services such as services to
help people who travel together to be located on the same map and to share common services
(such as restaurant proposals). Advertising services may also appear when approaching some
hotel, restaurants or gas stations for example.

Self-healing requirements We consider the “basic” behaviour of the GPS unit as the fol-
lowing: the route is already computed and displayed, the GPS unit periodically connects to the
nearest base-station to get local information and reports a “green light” if traffic conditions are
normal. We may think of three or more “modes” for the GPS unit related to traffic conditions
such as : “normal”, “alert”, “major hazard”.

In case of an alert concerning safety, the GPS have to self-adapt its behaviour : for example,
it could try to find other sources of information given by ad hoc services. These ad hoc services
are registered by the IoS registry services (see deliverable CD-JRA-2.3.3). The GPS unit then
can collect, use and possibly resend the information provided.

In case of poor connectivity (or even a total failure) with the base-station preventing to
contact navigation services, we may think of building a P2P navigation service with other
drivers. This is another example of self-adaptation at the level of the GPS car unit.

At the level of information services, there is also a need for self-adaptation because ad
hoc services provided by drivers may also be useful to compute information that could be
broadcasted.

In addition, some new maintenance or security vehicles (also running ad hoc services) may
be sent to the place where there is an accident and join the P2P community.

In case of an accident, there is a strong need of self-healing for information services because
the volume of information exchanged may increase, so more resources may be needed. Moreover
in case of a major crisis, probably some information services will no longer be available (such
as hotel or tourist information) and the behaviour of the traffic information services may be
different than in normal traffic conditions.

Another example is the GPS car unit that may contain services such as delivering the co-
ordinates of the car to authorized people. In case of a good connectivity they can use both
satellites and network base-station to compute localization. If there is a poor connectivity only
satellites should be used. This is another kind of self-healing need.

Deployment and run-time management requirements We also consider cases where a
service should be deployed dynamically, on-demand, from an image stored in the registry (or at
a location indicated by the registry) to enable a navigation (or other computationally intensive)
service on the cloud. The basic assumption is that there are certain services that do not need
to or cannot be provided in a static, permanent way. Instead, these services should be created

External Final Version 1, Dated March 16, 2009 9

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.2

and decommissioned in an adaptive, dynamic, on-demand way for temporal, spatial or semantic
reasons.

For example, there is no need to dedicate certain resources to certain services as they occur
rarely or at least infrequently (temporal availability).

In some other cases resources cannot be assigned to certain services as they have to be
spatially available. For instance, if the surrounding service providers do not offer a navigation
service, but a user needs a more precise solution than its GPS can offer, the service may be
deployed for just the timeframe the user is on site. When the user leaves, this navigation service
is decommissioned.

It is also possible that certain services are needed upon a certain event (semantic availability).
For instance, an unforeseen event in the travel scenario, like an accident may fundamentally
change the requirements posed to certain services.

Sometimes, it is unknown how many instances or what version of a certain service is required.
For instance, in case of a congestion, overload on a certain service, new instances may be deployed
or alternatively, new resources may be assigned to the existing services.

As some ad hoc services may be mobile, they cannot be assumed constant. In certain cases
dynamic re-deployment of a service not available locally may be necessary.

A more complex case involves spatial and temporal emergence for services as well as a
strong need for adaptation. The user offers the video stream of the volcano eruption (like in the
example in section 5) then service providers will deploy on-demand a streaming service close
to the user’s location. This streaming service then will take over the burden of broadcasting
the streamed content to the viewers of the eruption by acting as a huge bandwidth relay for
the viewers. It is possible to adapt the eruption’s movie to the different viewing devices: it is
not just the bandwidth but also the computing power required to transform the user’s video
stream to various formats on the fly. When the stream is ended the broadcasting service would
be decommissioned.

4 Requirements for Adaptation and self-* in Service Execution

This section refers mainly to Thread C1 of the WP 2.3 research architecture but may also apply
to A1 and B1.

4.1 Requirements for a local adaptation and self-healing infrastructure

In order to help developers and designers of adaptable services, we think that a general model
is needed to describe and to implement adaptation mechanisms.

An adaptation framework should follow the functional decomposition of an autonomic man-
ager suggested in [14], dividing the adaptation in monitoring, analyzing, planning and executing
parts. Each part triggering the next one: the monitoring gather contextual information used
by the analyzing part to decide whether an adaptation is needed or not; from this need, the
planning part builds an execution plan to be executed by the executing part. Figure 6 shows
how those parts could be organized.

The contextual information can be gathered by probes through events and measures. Events
can trigger an adaptation while measures are done on demand by the analyzing part when
complementary information is needed. The monitoring is not only platform specific, it can also
be application or domain specific when adaptation is not due to resources. The application itself
can be monitored, for self-healing purpose for example, by a machine learning software, the user
or by using ad-hoc metrics.

The analyzing part is done by the decider. When receiving an event, the decider chooses if
an adaptation is needed by following a specific decision policy. This policy can be expressed by

External Final Version 1, Dated March 16, 2009 10

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.2

Event Strategy

Decider Planner Executor

Policy Guide

Plan

cr
ea

te

tri
gg

er

re
qu

es
t

Monitor

Action

Measure

ex
ec

ut
e

tri
gg

er

cr
ea

te

cr
ea

te

tri
gg

er

Figure 6: Structural decomposition of the general adaptation framework.

“event-condition-action” rules or goal-based functions for example, depending on the decider’s
implementation. This structure enables to choose the decider the best suited to each decision
problem without imposing one way to write every algorithm. Furthermore, this structure enables
to use the same decider for different services; only the policy is specific to each service adaptation.

Once an adaptation is chosen, the decider sends a strategy to the planning part, implemented
by the planner. The planner has to work out how to apply the strategy to the service to adapt.
Which means that the decider has to decompose the received strategy into elementary tasks to
be executed. In order to better know the current state of the service to adapt, the decider can
request contextual measures to the monitoring part. In the same way and for the same reasons
that the decider follows a policy, the planner follows a guide. For example, the guide can be an
oriented graph representing every possible configurations connected by the actions to perform
to go from one configuration to another. In this case, the planner would use the graph to go
from the running configuration to the one described by the strategy in order to build the plan.

Then the action plan is sent to the executing part, which is the executor. Its role is to execute
each action specified in the plan, taking into account the execution of the service to adapt. To
do so, the executor may intercept the execution flow to execute adaptation actions. This part
of the framework is discussed later in the document as concrete actions in section 4.6.

This description can cover both self-adaptation and controlled adaptation, depending who is
responsible for the policy. In order to cover pro-active adaptation (for example for self-healing
purpose), one should provide monitors or interfaces to monitors able to generate events when
a deviation of the QoS or in the use of resource that may lead to a failure or a SLA violation
is detected. The evaluation of the opportunity to adapt or not as well as the evaluation of the
consequences of an adaptation prior to its execution can be included in the plan through the
definition of a specific guide. It is clear that some refinement of this framework may be useful
and should be done in cooperation with WP 1.2 works (see deliverable CD-JRA-1.2.2).

4.2 Requirements for Monitoring

Designing a service capable of adaptation consist in correctly providing it with monitoring
services or interfaces to monitoring services, adaptation policies and support for concrete actions.
Monitor services provide events relative to the service’s context, for the adaptation system to
base its decisions upon them. Monitoring has to provide information related to health of services.
In order to know if a service behaves properly, 3 different things have to be monitored :

– is the usage of resources compatible with the allocated resources ? If not, some resources
have to be reallocated or the instance of the service have to be replaced. This needs to
know the actual use of resources of a service, the limits of the resource usage and to be able

External Final Version 1, Dated March 16, 2009 11

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.2

to allocate dynamically new resources to a service or to replace an instance of a service.

– does the actual QoS of the service conform to the SLA ? Can we predict it will continue
to conform to SLA for further requests ? This needs to have a run-time representation
of SLAs allowing to know what should be monitored or to have the monitoring provided
together with an adaptation strategy.

– even if services are stateless from the client point of view, during execution of one call,
services have transient states (they are implemented as programs anyway). Is this internal
state healthy ? degraded ? To know this is very difficult because there is both the need
for a model of the service behavior and some between the model and the internal state of
the running service.

4.3 Requirements for decision support

In this section we describe the types of functionalities needed to be able to implement the
decision in the adaptation process at the infrastructure level. The decision support takes input
from monitoring mechanisms and produces a strategy (see section 4.4) as a result of a decision.

There are many ways to implement decision mechanisms depending on the complexity and
the accuracy of the decision to make and on the response time of the system one wants to design.
The simplest solution is to implement a simple Event-Condition-Action rule based system. Each
event triggers one (or more) rules if and only if some condition holds. This is a very simple and
efficient mechanism that is able to take into account the internal state of the system if needed.
The main drawback is that such a mechanism is only able to react properly to known events
and conditions. Moreover, if the system takes a bad decision once, it will take it at each time
it reaches the same configuration. This decision mechanism should be used only for very simple
and well known cases. Its main advantage is that it can be very lightweight. We have used
successfully such a decision system for the proactive adaptation of high performance parallel
programs to resource availability in [2].

Such a decision system can be more powerful if it can take into account patterns on events.
A survey on fault diagnosis using patterns for electronic systems can be found in [7].

If one needs to evaluate the consequences of an adaptation before triggering it (for pro-active
adaptation purpose), such a simple system is not enough.

Table 1 summarize this discussion. In order not to take always the wrong solution, it may
be necessary to have a memory of the previous decisions and results. In this case, a nice
implementation of a decision system could be done using neural networks [13]. Decision support
systems are a wide area of research. One can find a comprehensive bibliography on this topic
in [17].

4.4 Requirements for definitions of strategies

Monitoring provides information related to health. When monitoring reports degraded or broken
state there is a need to find a strategy for adaptation. If the broken state is not reached, pro-
active adaptation is still possible. The following strategies, as the result of the decision process
have to be studied : adapt, renegotiate or fail.

Adapt Different characteristics of services can be adapted. One of the simplest characteristics
to adapt are parameters as they are built to have their value changed during the services run
time and because they only need an write access through an interface.

The service’s internal behavior is another adaptable characteristic, representing how the
service achieves its purpose. So usually, changing a behavior means changing an algorithm.

External Final Version 1, Dated March 16, 2009 12

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.2

Table 1: Decision making tools

strategy based on consequences decision system
1 event no state predefined simple ECA (Event

Condition Action)
rule based system

1 event current state predefined simple ECA (Event
Condition Action)
rule based system

pattern on events current +past states memory IA based decision
system

* * evaluation pro-active adapta-
tion

Another characteristic that can be adapted is a service’s set of interfaces. Indeed, depend-
ing on its environment, a service might enable or disable some of its functionalities that are
reflected on its interfaces. For example, a service might want to discard to provide secured
communications while accessed through a virtual private network (VPN).

However, sometimes some behaviors cannot be known at design time, for example because
a human decision is involved in the conception of the behaviors at run time. In those cases, a
parameter cannot be used to choose a behavior. Therefore, the adaptation mechanism have to
be able to bind a sub-service implementing the required behavior to the main service.

Renegotiate If the service is unable to adapt its behavior or its parameters to maintain the
required QoS, it should renegotiate the (terms of the) QoS. This is studied in WP 1.2.

The service may also renegotiate with the underlying system in order to claim more accurate
resources, for example, in case a service needs more memory or more processors. The claim of
memory has been done in a virtualized system supporting a tomcat server [1].

Fail In case no adaptation strategy can be found, no resource claiming is possible nor able
to solve the problem and no negotiation is possible, the service could decide to fail living the
underlying system in a consistent state instead of waiting to crash. In this case the service gets
one chance to report his failure together with a diagnosis. This may help the designer to define
adaptation strategies avoiding to use this service in these conditions.

There may be nothing to report or no time to do it, so even if the service fails silently, living
the underlying system in a clean state, it is better than waiting for a crash.

4.5 Requirements for planning

A plan should be defined as a list of actions to execute for implementing the adaptation strategy.
Several actions often have to be performed, for example load a new implementation. Some of
these actions may be performed simultaneously (in parallel), but some have to be synchronized.
Finding a good schedule of these actions may be a difficult task. For each strategy it may be
possible to have predefined plans or one may rely on planning algorithms for finding the best
schedule of actions to execute. It may be possible to decompose a plan into elementary phases.
Some elementary phases may be reused to implement several plans; so it could be useful to
provide a repository of such elementary plans. For example, if it has been decided to migrate

External Final Version 1, Dated March 16, 2009 13

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.2

the service from one node to another, the service have to be stopped, pending requests have to
be stored; then the service code have to be copied on the new node, and then restarted.

4.6 Requirement for the support of concrete actions

In this deliverable we describe mechanisms at a conceptual level, so we are as much as possible
technology independent. If we want to implement concrete adaptation, we will have to know
how the service is implemented and what is the underlying infrastructure.

support for behavior adaptation If there exists multiple instances of different version of
one service, an adaptation can be to change from one version to another. If there is no deployed
instance of the new version, it could be deployed at that time. The versions of a service can
be programmed in different ways. For example, if an instance of a service seems to get out
of memory after some requests, it could be replaced by another one after some calls. For a
composite service S using S1; if we have some diagnosis on invocations of S1 telling us that S1
seems to be not healthy or to have already failed, a self-healing adaptation of S could be to
replace the running instance of S by another one that does not use S1. In this case, there is a
need to have access to the description of composite services.

Another way to change a service’s behavior is to use sub-services for each different behavior
and to switch between them when appropriate. This makes a good use of the dynamism offered
by SOA. For some services, the full list of possible behaviors can be known at design time (i.e.
statically), while for other this list can only be known at run time (i.e. dynamically). This leads
to two possible implementations of ways to switch between services. When all behaviors are
known at design time, the pattern state can be used to select the sub-service to use. Then a
behavior adaptation consist only in modifying a parameter. How to modify the parameter then
depends on the mechanisms selected to perform parametric adaptations.

If one has access to different implementations of a service, many adaptations can be achieved
inside the service container by changing the active implementation. For example, security checks
can be turned on/off depending on the environment. This needs to have for one service a list of
implementations within a description of their properties.

In case the service provider wants to add some self-* properties to a service, he has access to
the implementation of the service (the code). In this case it is possible to prepare the changes
of the internal behavior of the service. Adaptations can be entirely pre-programmed or only
prepared and then inserted at run-time using Aspect Oriented Programming Techniques [15].
In some languages, built-in support for reflection is a useful tool to use [8]. However, it is always
desirable to separate the business logic from the adaptation code.

support for parameter adaptation This is the easiest way for adapting a service, because
the possible values that a parameter should have been taken into account at the design time
of the service. But this type of adaptation is in general limited to very simple changes in the
behavior of a service such as: response time or frame-rate adaptation, change of coding format,
etc.

support for interface adaptation Dynamically changing interfaces is a way to support
adaptation but is not possible in all technologies. When this is not possible, it is still possible to
provide this functionality by using services as proxies for each interface. The different interfaces
of the service would by accessible by other services only through those proxies-services. Then,
the adaptation mechanism can stop and start the proxies when a need arise.

External Final Version 1, Dated March 16, 2009 14

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.2

4.7 Requirement for Integration level

Adaptations policies are rules to follow or objectives to meet. They state when a adaptation is
needed and how to adapt. Concrete actions are methods to use in order to modify the service,
like accessors (setters) to its parameters or bindings. The adaptation system has to provide a
clear interface to request those means of adaptation. This interface will have to be defined.

On one hand, to take advantage of the potential of SOA, the adaptation system can be
considered as a service. This means that a service needing adaptation would have to be designed
to require an adaptation service. Ideally, the service to adapt would be provided with the
adaptation service since it would be necessary, however another adaptation service could be
chosen at run-time. On the other hand, to take advantage of a close integration with service
implementations, the adaptation system should be implemented inside service containers or even
inside service implementations. These two points of view are conflicting and different solutions
should be studied depending on the balance between deeply embedded adaptation and reusable
adaptation.

4.8 Example of integrating self-adaptation in a master/worker framework

In order to present what might be needed to design an adaptation algorithm, we present here
the design process of an adaptation algorithm by an example coming from component oriented
computing. Despite this example deals with components instead of services, it is still relevant
since the design process of an adaptation algorithm is similar in both programming paradigms.

The application to adapt is an implementation of the master-worker paradigm with compo-
nents and is intended to be deployed on grids. Figure 7 depicts the components’ organization
inside the framework. This framework is to be used by developer to build distributed compute-
intensive applications without worrying about details of the grid infrastructure or its dynamicity.
Since grids are used by multiple users, their performance and availability characteristics can vary
largely during an application life-time. In order to use the framework, two components are to be
developed: the master component and the worker component. The framework distribute tasks
sent by an instance of the master component to multiple instances of worker components. It
use a simple algorithm to choose how many worker to use and which tasks distribution pattern
to use. When characteristics of the application (e.g. the ratio of tasks to be processed over
the number of workers) or the grid (e.g. resources usage) change, the framework has to decide
to change the number of workers or the tasks distribution pattern (a.k.a. the master-worker
pattern).

Figure 7: The master-worker paradigm, in software components

We have used the Dynaco framework based on the concepts described in 4.1 and described
in [3] to implement the adaptation of the master/worker. We present here how the adaptation
algorithm (deciding when to change the master-worker pattern) has been designed.

External Final Version 1, Dated March 16, 2009 15

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.2

Characterization We followed a down-top approach to design the adaptation algorithm,
keeping in mind the goal of the adaptation. So the first step in designing the adaptation
algorithm was to characterize the system to adapt.

The first thing we did when designing the algorithm was to state the different aims for the
adaptation—why do we adapt the component. We studied three QoS objectives:

– Maximize the throughput of the application. It is measured by the average number of
executed requests by second. We assume that every pattern ensure that every request sent
by the master is processed (i.e. there is no starvation).

– Minimize the processing time of any request, independently of the other requests. This
objective should not be confused with the preceding one. This objective enables to consider
the case where only some of the requests’ processing time are to be minimized.

– Respect a maximum time limit to process a request. This objective enables to design “soft
real-time” applications. It is the user responsibility to specify reasonable time limits, i.e.
that can be met, otherwise the satisfaction of this constraint cannot be ensured.

Then we selected the different behaviors for the collection, implemented in components by
task distribution patterns.

Many master-worker pattern exist and could be integrated in the framework by embedding
them into a component. We selected three of them: the simple and fast round-robin pattern,
the load-balancing pattern and the DIET [4] pattern with a modified scheduler.

The round-robin pattern distributes the number of request fairly among the workers, while
the load-balancing pattern distributes the workload fairly among the workers. The DIET pattern
uses a request sequencing policy, it uses a distributed architecture with many agents and has
probes to its disposal to estimate the workers’ processing speed. We use a modified version of
DIET, which differs from the original by a scheduler that sorts the requests by the estimated
time to process the requests, when possible.

In order to be able to decide to adapt, the application needs to monitor itself and the
distributed system. To this end, we have to select relevant parameters for the adaptation. We
consider a potential parameter as useful if its modification can generate a need to adapt, or if it
can be used to describe the state of the application’s part to adapt (here, the number of workers
and the master-worker pattern). Then, we decompose the parameters into elementary events to
monitor. So the first step of the algorithm is to build the parameters from the monitored events.

The decision algorithm Upon the characterization of the system to adapt, we were able to
build the algorithm.

The decision algorithm is based on the description of the behavior of the patterns, which
depends on the state of the pattern and the distributed system, and on a QoS objective. It
is designed to be generic: new patterns can be added to the application without modifying
the existing parts of the algorithm implementation. To this end, the behavior description of a
pattern is independent from those of the other patterns.

The algorithm is a compromise between performance and an ideal solution: it does not aim
to select the pattern the best fitted to every situation. Instead, it aims to discriminate a pattern
between the best fitted in a short time. Moreover, it is not always useful to select the optimal
pattern among two almost equivalent ones, as long as the inadequate ones are filtered.

The principle of the algorithm is to compare the patterns using a description of their behavior.
This comparison is done using positives scores: the pattern with the lowest score is the best
fitted to the situation for the given QoS.

The behaviors of the patterns are divided into elementary behaviors for each of which a cost
function is defined. A cost function represent the extra-cost induced by a behavior, with regard

External Final Version 1, Dated March 16, 2009 16

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.2

to a QoS objective. Each of these functions take as input a characteristic built from monitored
parameters.

These functions can be discovered using simulations, by monitoring the behavior of the
pattern in controlled environment or by knowing how the pattern behaves. This can be a long
process, depending on the complexity of the behaviors.

The identified characteristics are:
– the number of workers;
– the number of requests being processed;
– the number of requests being processed divided by the number of workers;
– the variability of the workload of the workers due to the environment exterior to the

workers;
– the variability of the processing power of the workers;
– the variability of the time to execute requests;
– the heterogeneity of the network;
– the time to execute requests added to the time to send them across the network;
– all of the parameters.
For each of these nine characteristics, a cost function compute an index, which is a posi-

tive number (within R+) estimating the extra cost resulting of the behavior described by this
function. It is without unit, since the estimation depends of the QoS objective. A value of 0
means there is no extra cost for this behavior. A value greater than 1 means that the extra
cost is significant. The significance threshold is arbitrary set to 5%. The value +∞ means the
impossibility for the pattern to respect the QoS objective.

With each of the first seven characteristics an index is associated that represents the ex-
tra cost resulting of the characteristic. Two special indices are associated with the last two
characteristics: the relative extra cost by request and the extra cost specific to the pattern.

The index of the relative extra cost by request is calculated using an extra cost function given
by each pattern to get the extra cost by request (in seconds) which is then divided by the time
to process the request (in seconds). So it uses all of the parameters as a characteristic, since
the function may need any of those. The extra cost specific to the pattern is used to take into
account all the specificities of a pattern that cannot be expressed by the other indices.

Those indices are then weighted by two classes of positives coefficients. General coefficients
are common to all of the patterns and are used to weight the indices between them. Specific
coefficients are specific to each pattern; they are used to adjust the indices within the patterns
and to adjust a pattern against the others. The coefficients can be calibrated by hand, or
modified by a learning algorithm, by measuring the results of successive adaptations.

Once the indices are weighted, they are added to make a score by pattern. Then the scores
are compared; the pattern with the lowest score is selected. If the difference between this score
and the score of the pattern currently used is greater than 5% of the latter (that is, if the
difference between the scores is significant), then an adaptation is triggered. If all the scores are
infinite, there is no lowest score, so there is no pattern selected and no adaptation triggered. In
case of conflict between patterns, one is to be arbitrarily selected, the last used might be a good
choice to avoid the overhead of deploying a new pattern.

To validate the decision algorithm, two simulators were developed: one to simulate master-
worker patterns on distributed systems, the other to take decisions according to the algorithm.
The first one is used to simulate the behavior of the various schedulers of the patterns and
characteristics of the distributed systems (like the computers workload). The second one offers
to simulate the evolution in the time of the parameters used in the decision algorithm, in order
to visualize adaptation choices done by the algorithm.

External Final Version 1, Dated March 16, 2009 17

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.2

5 Requirements for self-healing and decision support in deploy-
ment and runtime management

5.1 Introduction

Deployment and runtime management is aimed at providing or modifying services in a dynamic
way according to temporal, spatial or semantic requirements. Among many other puposes, it
has also strong relation with adaptation and self-healing. The material presented in this section
is related to planned research work in research topic C2 in Figure 1. We take into consideration
two motivating examples. The first one is from the general scenario (Section 3), the other is an
additional, more specific one.

Scenario 1 In the NavInc. scenario [6] there are services that do not need to or cannot be pro-
vided in a static, permanent way. Instead, these services should be created and decommissioned
in an adaptive, dynamic, on-demand way for the following reasons:

– There is no need to dedicate certain resources to these activities as they occur rarely or
at least infrequently.

– It is possible that certain services are needed upon a certain event.

– It is unknown how many instances or what version of a certain service is required.

– As some ad hoc services may be mobile, they cannot be assumed constant.

– In certain cases dynamic re-deployment of a service not available locally may be necessary.

Scenario 2 In the CarInc. scenario [6] there are certain procedures in the Production and Test
activity that may require specific services and resources in an ad hoc, temporal way. Definitely,
there is no reason to provide these services in a static 24/7 manner with performance guarantees,
instead, these services should be created and decommissioned in a dynamic, on-demand way for
the following reasons:

– These tasks represent fundamentally different computations that cannot be re-used or
composed, potentially not even overlapped, e.g. air tunnel simulation, crash test analysis,
various optimization procedures, and so on. These services must be provided independently
form each other in a well defined and disjoint time frame.

– There is no need to dedicate certain resources to these activities as they occur rarely or
at least infrequently. Resources used by the optimization services, for instance, can be
re-used for other purposes when no optimization service is required.

The aim of this section is to investigate the requirements of the self-healing and decision
support aspects of runtime management. The requirement analysis is facilitated by a conceptual
architecture (Figure 8). Temporal provision of services requires certain infrastructure features
that we classified into three groups. There must be a negotiation phase when it is specified,
what service is to be invoked and what are the conditions and constraints (temporal availability,
reliability, performance, cost, etc.) of its use. Subsequently, an agent must select available
resources that can be allocated for providing the services. These resources can be provided
in many ways: clouds (virtualized resources configured for a certain specification and service
level guarantees), clusters or local grids (distributed computing power with limited service level
guarantees) or volunteer computing resources (no service level guarantees at all). Finally, the
service must be deployed on the selected resources in an automatic manner.

External Final Version 1, Dated March 16, 2009 18

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.2

Our aim is to investigate (meta)negotiation, (meta)brokering and (auto)deployment issues.
The purpose of the conceptual architecture is to provide an integrated framework to investigate
the three areas in a unified way. Albeit, the architecture could be implemented this way, other
realizations are also possible. In this sense, the architecture is not a concrete system design
rather a conceptual framework.

Figure 8: The conceptual architecture for deployment and runtime management showing the
relations to research topics

In the followings, requirement analysis is presented for negotiation, brokering and deployment
with respect to self-healing and decision support features.

5.2 Requirements for Agreement Negotiation

In the early days of Grids users had to commit themselves to dedicated Grid portals to find
appropriate services. Thus, service providers and consumers had to communicate using pro-
prietary negotiation formats supported by the particular portal limiting the number of services
a consumer may negotiate with. In present day Grids/Clouds service provider and consumer
meet each other dynamically and on demand. Thus novel negotiation strategies and formats
are necessary supporting the communication dynamics of the present day Grids/Clouds. In this
section we address the second point of the Scenario 1 where certain services are needed upon a
certain event. If for example, an unforeseen event in the travel scenario, like an accident may
fundamentally change the requirements posed to certain services. Thus, we assume that we have
to find services from publicly available registries and to negotiate with those services even if we
do not know about the supported negotiation protocols, document specification languages and
similar.

Before committing themselves to an SLA, the user and the provider may enter into negotia-
tions that determine the definition and measurement of user QoS parameters, and the rewards
and penalties for meeting and violating them respectively. The term negotiation strategy repre-
sents the logic used by a partner to decide which provider or consumer satisfies his needs best.
A negotiation protocol represents the exchange of messages during the negotiation process. Re-
cently, many researchers have proposed different protocols and strategies for SLA negotiation in
Grids. However, these not only assume that the parties to the negotiation understand a common
protocol but also assume that they share a common perception about the goods or services under
negotiation. In reality however, a participant may prefer to negotiate using certain protocols
for whom it has developed better strategies, over others. Also, a participant may choose to only
allow certain aspects of a good or a service to be negotiated which may not be acceptable to

External Final Version 1, Dated March 16, 2009 19

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.2

others. In other words, the parties to a negotiation may not share the same understanding that
is assumed by the earlier publications in this space.

In order to bridge the gap between different negotiation strategies we need a mechanism
we refer to as meta-negotiations. The aim of a meta-negotiation is to find appropriate services
a service consumer may negotiate with. The following aspects of meta-negotiation should be
considered / solved:

– Develop a scenario where service provider and consumer may exchange their prerequisites
for the negotiation. Based on the scenario service consumer and provider should meet
each other, exchange the documents, start and conclude meta-negotiation. The outcome
of the scenario should be a bunch of candidate services to which service consumer may
start negotiation.

– Meta-negotiation should by represented by means of a meta-negotiation document where
participating parties may express:

– the pre-requisites to be satisfied for a negotiation, for example a specific authentica-
tion method required or terms they want to negotiate on (e.g. time, price, reliability);

– the negotiation protocols and document languages for the specification of SLAs, e.g.
Web Service Level Agreement (WSLA) or WS-Agreement that they support;

– and conditions for the establishment of an agreement, for example, a required third-
party arbitrator. The meta-negotiation document should be specified using standard
technologies and languages.

– Development of the appropriate meta-negotiation middleware consisting of following com-
ponents:

– Registry: The registry should be a searchable repository, like a service registry, for
meta-negotiation documents that are created by the participants. The participants
should submit their documents and request matchig services which provide and under-
stand specific negotiation protocols, or specification languages. We should consider
development of the distributed and federated registries in order to avoid performance
bottleneck. Registries requirements can be found in deliverable CD-JRA-2.3.3. Also
the concepts like Cloud computing could help to deal wiht performance bottlenecks.

– Meta-negotiation middleware. The meta-negotiation middleware should facilitate the
publishing of the meta-negotiation documents into the registry and the integration of
the meta negotiation framework into the existing client and/or service infrastructure,
including, for example, negotiation or security clients. Besides being as a client for
publishing and querying meta-negotiation documents the middleware should deliver
necessary information for the existing negotiation clients, as for example information
for the establishment of the negotiation sessions and information necessary to start
a negotiation. We assume that each service consumer may negotiate with multiple
service providers concurrently. Also even the reverse may happen as well, wherein a
consumer advertises a job. In such cases, the providers would negotiate with multiple
consumers.

Managing service executions, the following means of negotiation need to be provided:

– User - Negotiator: user supplies input for a meta-negotiation document.

– Negotiator - Service brokering: they need to agree on a specific negotiation document
using a specific negotiation strategy and negotiation protocols to lower components.

External Final Version 1, Dated March 16, 2009 20

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.2

– In Service brokering: the agreed negotiation document needs to be filled by parameters
like concrete execution time, concrete price, etc. (i.e. the negotiation terms).

– Service brokering - Deployment: they should agree on a specific service to be available
on the managed resources with the resource constraints resulted from the higher level
negotiations. During this phase the deployment component need to share information on
resource availability and deployment costs.

5.3 Requirements for Service Brokering

In this subsection we are focusing on the Service Brokering component of Figure 8. Brokers are
the basic components that are responsible for finding and selecting the required services. This
task involves various activities, such as service discovery and selection, and interactions with
deployment, information systems, service registries and repositories. Looking at the general
architecture in Figure 8, we can see that this level is in connection with Agreement Negotiation
to upper level and Service Deployment to lower level. Subsection 5.2 described the agreement
negotiation requirements and steps. Service brokering should participate in the negotiation
process by providing information on dynamic brokering, deployment and execution capabilities.
After the agreement is made, a service broker should be selected for the service request that
is able to provide the service execution. The broker may require service deployment (in cases
when a service is only available in the repository in image form). The interaction with a deployer
and the deployment requirements and steps are detailed in subsection 5.4. The invoked broker
should select a service and execute it taking into account the user requirements and the SLA
terms.

We start examining the service brokering layer requirements from lower to upper levels.
Below this layer we can find the service deployment and the services of various providers. The
following requirements emerge from interacting with these lower layers:

– Service monitoring: information on service properties and states are needed by the brokers.
This data can be published by the services themselves, or gathered by an external service or
agent. Additional dynamic and availability information can be gathered by the deployment
service (e.g. a service is deployed or only available as an image, what are the costs of
deploying a service).

– Service description: there should be a common format, a service description language (an
example is introduced in [12]) to store the service properties, semantics along with the
additional information provided by service monitoring (including costs of service deploy-
ment and execution in terms of time, price, etc.). Note that unifying different service
description languages is necessary for efficient central management, there will always be
certain service groups that use an own standardized language for this purpose (e.g. grid
services use the JSDL standard [19]).

– Service registry: the description of each service should be stored in a registry that can
be queried by the service broker. The design of this component is the task of research
thread B in Figure 1, and deployment, to be described in the next subsection, can also use
and extend this service registry. Most requirements arise from the Service Brokering layer
itself as follows:

– Service discovery: the role of this process is similar to the definition given by research
thread A of the vision shown in Figure 1. For a service broker this task means information
retrieval from the service registry.

External Final Version 1, Dated March 16, 2009 21

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.2

– Service selection: this task requires self-adaptability – different processes are needed de-
pending on the information found in the registry:

– first a matchmaking process should be started in order to select the most suitable
service by matching the requester’s needs to the service properties; if there are more
instances of a similar services available, the dynamic performance data, the SLA terms
and the requester satisfaction (QoE - quality of experience [18], this also represents
a link to the A3 research topic on Figure 1) rate of the services should be examined
and compared. Various selection policies need to be defined to be able to adapt to
different situations.

– if there no such service is found (or only one or some of it are found, but they are
unavailable or poorly performing), but a service image is available for deployment,
the broker should decide whether to ask for a deployment or respond with rejection
of the service request.

– a basic self-healing property is the re-selection process, which is needed in case of a
service execution failure – in this case the selection process should be restarted.

– Self-monitoring: another step towards self-healing operation is a monitoring agent that
watches the heartbeat of the broker (this task is in connection with JRA-1.2):

– to preempt overloading, under heavy load (when the number of service request exceeds
a certain threshold) it notifies the broker to reject further requests in order to remain
in a healthy state.

– in case of halting due to some system failure, a process should be triggered that
restarts the service.

– Agreement enforcement: brokers also need to take part in the agreement negotiation pro-
cess. They provide information on service execution costs to upper layers (which will be
stored in a broker registry detailed later). Once an agreement is made by higher level me-
diators, it should accept (or reject) the terms (e.g. agreed price and deadline for executing
a service) that need to be ensured by the broker during service execution. Whenever an
execution failure occurs, the broker needs quick reactions with high adaptability to find
another service or restart the failed one, etc.; this kind of behavior should be governed
by predefined policies that also affect the service selection process. If the broker rejects
the agreement (not able to fulfill them) or cannot enforce it due to some failure, it should
notify the mediator to select a different broker or renegotiate the SLA.

To deal with heterogeneity and with the growing number of services, special purpose brokers
(for human-provided or computation-intensive services) or distributed broker instances should
also be utilized and managed by the system. This requires a higher-level management of these
brokers within this layer. This high level manager is responsible of brokering brokers, therefore
we name this manager as a meta-broker, which component has the following requirements:

– Broker monitoring: the states and the performances of the brokers should be tracked.

– Broker description: brokers have various properties, which should be expressed with a
general broker property description language. These properties include:

– static properties: some of them are specialized for managing human-provided services,
others for computing-intensive or data-intensive services;

– and dynamic properties: if two brokers are managing the same type of services some
of these may have longer response times, less secure or more reliable. Information on

External Final Version 1, Dated March 16, 2009 22

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.2

the available services (e.g. type, costs, amount) also belongs to this category, since it
changes over time.

– Broker registry: The broker properties should be stored and updated in a registry accessible
by this higher-level manager. The update intervals of broker state changes and the amount
of data transferred should also be set automatically, with respect to the number of available
services and utilized brokers. Too frequent updates could lead to an unhealthy state and
rare updates cause higher uncertainty and inefficient management. This registry should
be more like a local database that makes this higher level brokering able to decide, which
broker could provide the fittest service (according to the user requirements and SLA terms).

– Broker selection: Selecting a broker for a service request means a higher-level brokering
problem. Self-adaptability also appears in this task: generally a bit higher level of un-
certainty exists at this process compared to service selection, since the high dynamicity
of the broker (and forwarded, filtered service) properties and availability cause volatility
in the information available for this manager. To cope with this issue, several policies
could be defined by sophisticated predicting algorithms, machine learning techniques or
random generator functions. Load balancing among the utilized brokers should also be
taken into account during broker selection. Finally basic fault tolerant operations, such as
re-selection on broker failure or malfunctioning also need to be handled.

– SDL and translation: A generalized Service Description Language (SDL) is needed to be
able to express all kinds of service requests (or properties). Different brokers may accept
different languages, therefore the translation of SDL to these formats is also important
(the manager should be able to speak with the utilized brokers).

– Broker invocation: Different brokers may have different interfaces that the meta-broker
should be able to use.

– Self-healing: self-healing operation of the meta-broker is also needed. Just like in the case
of brokers, a monitoring agent should watch the heartbeat of this manager component
(this task is in connection with JRA-1.2):

– to preempt overloading, under heavy load (when the number of service request exceeds
a certain threshold) it notifies the manager to reject further requests in order to remain
in a healthy state;

– in case of halting due to some system failure, a process should be triggered that
restarts the service.

Interacting with the upper layer means participation in the agreement negotiation. This step
has the following requirement:

– Agreement negotiation and enforcement: In order to communicate with the higher level
negotiator component (i.e. the meta-negotiator detailed in the previous subsection), a
negotiation protocol should be selected and implemented. The meta-broker should gather
and propagate information (stored in the broker registry) needed for agreement creation
(available services of brokers and their execution costs). The agreed SLAs should be
forwarded to the selected broker together with the translated service description. If the
broker accepts the agreement, it should start its brokering process for finding, selecting
and executing the required service. In case of a failure (in selection or execution), it should
inform the negotiator of breaking the SLA or call for modification or renegotiation if it is
possible.

External Final Version 1, Dated March 16, 2009 23

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.2

5.4 Requirements for Service Deployment

Automatic service deployment is on the higher-levels of the service management concepts (see
figure 8). It provides the dynamics to SBAs – e.g. during the SBA‘s lifecycle services can appear
and disappear (because of infrastructure fragmentation, failures, etc.) without the disruption
of their overall behavior, for other examples see the scenarios discussed in section 5.1. Service
deployment process is composed of 8 steps:

1. Selection of the node where the further steps will take place

2. Installation of the service code

3. Configuration of the service instance

4. Activation of the service to make it public

5. Adaptation of the service configuration while it is active

6. Deactivation of the service in to support its offline modifications

7. Offline update of the service code to be up-to-date, after update the new code optionally
gets reconfigured

8. Decommission of the offline service when it is not needed on the given host anymore

Automation of deployment is automation of all these steps. However each step requires different
approaches, therefore they are discussed separately here. First of all the automation of the target
site selection, which is required for local adaptation or for adaptation on the infrastructure layer
level. Automation also includes the automated preparation of the service‘s code and configuration
for installation. This preparation usually means the service code is split into smaller pieces to
optimize code delivery to a given site. These smaller pieces are called packages, and they include
dependency information about what other steps are needed to install themselves on a given host.
The dependencies could include required configurations or packages which should be installed
prior the current one. Packages help optimize the code delivery because they can be replicated
on the infrastructure depending on their need, thus the more frequently requested packages
can be acquired from local or at least closer sources (e.g. from a service code repository or
from a simple HTTP/gridftp/etc. server). Further automation options are discussed among the
different requirements proposed in the following sections.

Assumptions. In this section we call services higher-level, when they are built on top of
automatic service deployment. Even though there could be other services which are built on
top of service deployment, in this section we place deployment under the Meta-Negotiation (sec.
5.2) and Meta-Brokering (sec. 5.3) services as described in the previous sections. Therefore
the offered interfaces and functionalities for these higher-level services will be further discussed
during the collection of the requirements.

As an opposite to higher-level services, in this section we are going to refer low-level services
as the ones which are used during the automation of the deployment process. A low-level
service operates on the same node where its instance is running. Typical low-level services
are including the management, adaptation, configuration and installation services. Adaptation,
configuration and installation services are offering the functionality of a given deployment step
discussed in the previous paragraphs. Management services however, are usually composite of
the adaptation, configuration, and installation triplet. Installation services should be available
on each node of the service infrastructure because they let other services to be installed on their
node. It would be beneficial that all the other previously mentioned services are available on the

External Final Version 1, Dated March 16, 2009 24

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.2

nodes, however using the installation service it is possible to install and activate these services
on-demand. Management, configuration and adaptation services are necessary to accomplish
self-healing and local adaptation because the execution of the self-healing and local adaptation
strategies going to involve them. As an exception, installation services are usually not useful for
self-healing. Because installations can further degrade the health state of the already deployed
parts of the service, which is the situation self-healing tries to avoid.

5.4.1 Deployment requirements to support self-healing services

The definition of self-healing is discussed in detail in section 2.3, however in case of service
deployment there are further assumptions. In this section self-healing is the automated execu-
tion of an adaptation strategy on a service instance, where the automation is initiated within
the service instance‘s node and the adaptation strategy only involves low-level services. The
definition of the adaptation strategies can be found in the CD-JRA-1.2.2. In the deployment
scope most important aim of self-healing is to try to avoid SLA violations and still maintain a
healthy state. It is discussed about behaviour adaptation (see section 4.6 on page 14) that a
single service instance should have multiple service interfaces available, and adaptation is simply
achieved by activating one interface for the current needs and also deactivating an unhealthy
one. In this section it is assumed that no new service interfaces are deployed on the node as
a result of an adaptation strategy, however already deployed interfaces could be activated and
deactivated with the help of the deployment system as required.

As it can be seen on figure 6, there are several decisions to make during the adaptation of a
service. First of all, the decider requires monitoring events, and policies, secondly the planner
requires guides, finally the executor takes actions. All of these have to be provided for a properly
working self-healing infrastructure. In the next paragraphs we discuss how the decider, planner
and executor can be supported by the deployment system, and what are their requirements to
be able to make plans including deployment tasks.

Management services are essential parts of the automatic service deployment as they are
providing among others adaptation and configuration services. Such features are commonly
offered by service management systems, like the WSDM [16] OASIS standard. The management
services are essential because they are required by the executor (see section 4.6 on page 14) in
order to extend the possibly executed actions with the deployment steps. Having these services
on a node the planner can include them in its plan. The advantage of the use of management
services over arbitrary actions, that the deployment related actions can be uniform, and the
plans could became simpler.

Because the management services offer sensitive functionality of a node, they should be
secured and they might allow only internal access to them. As an option for higher-level adap-
tation these management interfaces might be accessible from composition, brokering or other
higher-level services. This option needs the management services to be secured properly, result-
ing that only these higher-level adaptation mechanisms can access their interfaces. This way
the management interface would open the possibility of reconfiguring a service as required for
the higher-level services.

Packaging. The smallest individually manageable part of the service is called the package. It
is the smallest, because it encapsulates the management metadata with the managed part. The
easiest packaging option is to pack a service and its configuration options together. However
services can be packaged in smaller pieces also. As a result these smaller pieces can be indi-
vidually replaced or corrected if needed, thus there is no need for redeploying the entire service
again from. However by separating the service into smaller packages, these packages should

External Final Version 1, Dated March 16, 2009 25

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.2

also include dependency information between the different portions of the service. Using the
dependency information the service can be reunited again. Thus the management service should
be able to handle dependencies between packages and it should be able to individually configure
them.

Healing strategies are discussed in later paragraphs, however they are also concerned with
packages because they usually involve configuration options of the packages. As a result the
healing strategy does not need to deal with the full reconfiguration of the service if the reconfig-
uration of one of its tiny parts is enough to achieve healthy state again. These small adjustments
are beneficial for the self-healing system‘s decision-making algorithm, because these steps usu-
ally affect fewer parts. Because the planning will use less configurable options it would be able
to finish the plans earlier. This is not possible when the services are offered in a single package
because to activate a new configuration, they have to be deactivated, decommissioned, installed,
configured and then activated again. With the help of the packages only the necessary parts of
the service has to go through this long process.

Monitoring terminology and requirements are discussed in workpackage JRA1.2 as the higher-
level monitoring model, here we reuse their methodology, and identify the concepts of the mon-
itoring in the scope of the requirements for service deployment. The decider from the figure 6
is connected with the monitoring system. It is the actual requester and consumer of the mon-
itoring. The decider will request various domain specific measurements of the service instance,
and it can also request the list of packages, or the list of interfaces available through these pack-
ages, etc. These last two examples are the monitored properties which should be collected by
the deployment system. Depending on the different service interface configurations the decider
should determine differently the current health state of the service instance. As a source for the
monitored properties the information sources about the locally installed packages can be the
deployment system’s own registry or the packages themselves. In the packages the deployment
system can also store the policies which can be applied when a given package is available. These
policies should be offered towards the decider, which will meld the different package policies
with its own policies together in order to determine whether there is a need for self-healing.

Healing strategies are adaptation strategies used in self-healing. Adaptation strategies are
defined in CD-JRA-1.2.2 higher-level adaptation model. As we did with the monitoring, we also
reused their adaptation methodology here to find the requirements of the service deployment for
healing strategies. When the decider realizes that its policies suggest adaptation, then it defines
the adaptation requirements for the planner. The planner determines what adaptation strategy
to use. The deployment system should offer smaller strategy portions in which it describes how
to achieve a deployment goal required by the planner:

– How to activate an inactive service interface

– What steps needs to be taken in order to change a specific configuration value

– It should be able to tell whether it is possible to do a runtime change or the healing strategy
for a given configuration change should also include the deactivation and the activation of
the service.

These strategy portions then will be embedded in the final plan. When the plan is executed
the management services will do the adaptation of the adaptation subject - the service instance
which is under self-healing.

External Final Version 1, Dated March 16, 2009 26

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.2

5.4.2 Deployment requirements for local adaptation

Local adaptation is defined in section 2.2, however in the scope of deployment local adaptation
is a simple extension of self-healing by extending the decider policies with conditions about
the service instance‘s context. As an example during the decision making process the decider
should take into consideration the health state of the surrounding services which offer the same
funcitonality.

Service instances should offer interfaces to share their health status independently from an
information service. The health status of a service instance does not need to be externally under-
stood, the only requirement that other service instances, which offer the same interface should
understand them. A monitoring infrastructure should be built similarly to the self-healing moni-
toring solutions, however the events and adaptation strategies should take into consideration the
health state of the connected service instances. For example the service instance now can make
decisions whether it has to prepare for an increased amount of requests. As a result it should
use its management interfaces to reconfigure itself to make sure it will bear the future load.
In case the local adaptation is offered without self healing capabilities, then the management
interfaces will not be available for the service instance, therefore the locally adaptable services
should decide together to use the automatic service deployment system to deploy a new instance
which can cope with the increased needs and it could also decide to request the decommission
of a underperforming service instance from the group.

Discovery is detailed in the deliverable CD-JRA-2.3.3, thus this paragraph just shortly sum-
marizes the discovery needs of the deployment system in case of local adaptation. Service
instances should not build on centralized discovery mechanisms to find other instances offer-
ing the same service interface in the SBA. Service instances should have embedded discovery
mechanisms and they should use it as a failsafe solution. For example by using peer-to-peer
mechanisms the service instances can decide to locally increase the processing power of a given
service by deploying new instances in the neighborhood without even affecting the entire SBA.
This could be useful when the SBA becomes partitioned or the service instances further away
cannot feasibly serve the locally increased service requests.

The packages should be stored in a repository as part of the automatic service deployment
system. This repository is a package repository, and it is not a single entity in the infrastructure
but replicated. In case of new deployments, frequently used components can be replicated and
also merged when the package retrieval patterns suggest – e.g. two packages are frequently
downloaded together. Packages should also be stored with their configuration options, because
healing strategies are usually simple maps between different situations and configuration options.

5.4.3 Deplyment requirements for the adaptation in the infrastructure layer

Adaptation in this case is restricted to the infrastructure level. There are no restrictions on what
services can be included to adapt a service, however the whole infrastructure layer should offer a
“single” interface towards the composition and BPM layers in order to enable information flow
between the layers, and make it possible to adapt on information available only in the higher
layers.

In the infrastructure layer the connection with the deployment system and the broker has to
be investigated. This interface is partly discussed in the meta brokering section (see 5.3 on page
21). As it can be seen there the adaptation decisions affecting the deployment system are made
on information mostly offered by third parties - e.g. service registries, information systems.
However the deployment system should also provide information to the higher-level services.
This information helps the these services to include deployment tasks in their adaptation strate-
gies. For example the deployment system should provide information about the pricing of the
different resources it can deploy services on. The pricing information can be forwarded to the

External Final Version 1, Dated March 16, 2009 27

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.2

meta-negotiation services. Another important example is the deployment system’s estimates
about deployment time of a given service on a given resource. With this information the ser-
vice broker could decide on deploying a new service instance, if the current demand cannot be
fulfilled without breaking the SLAs of the ongoing requests.

5.4.4 Deployment requirements for interface changing adaptation

Finally there is the case when the already deployed service interfaces are not sufficient for the
adaptation of the service. In this case a new service interface will be introduced for the service,
however this interface might be unknown to the SBA. Therefore the SBA also needs to adapt to
the new, more suitable service interface offered after the adaptation procedure. As a result this
adaptation procedure should also initiate adaptation on higher layers like composition or BPM
- these layers and their interfaces are discussed in JRA2.1, and JRA 2.2. On the infrastructure
layer the deployment system is used to change the interfaces on a given node. This should
result the decommission of the previously installed service code. After this step the service code
supporting the new service interface(s) is installed and configured. An intelligent deployment
system should try to reuse all the previous packages, which are both supporting the old and the
new service interfaces. To hold a package the deployment system should make sure the already
available packages can be trusted because they are unchanged or they can be reconfigured to fit
the needs of the new service interface.

5.5 Summary of requirements

Table 2 summarizes and structures the different aspects of requirements for each of the three
functionalities of the conceptual architecture.

Table 2: Summary of requirements

Adaptability require-
ments for

Agreement negotia-
tion

Service Brokering Service deployment

Self-healing negotiator failures Broker failures,
Meta-broker failures

management ser-
vices, packaging

Decision support selection of negotia-
tion protocols, selec-
tion of the agreement
languagues

Service selection,
Broker selection,
SLA negotiation,
SLA enforcement

monitoring, healing
strategies

6 Conclusions

The requirements for self-healing and local adaptation have been studied in the document re-
garding service execution, deployment and runtime management.

Local adaptation is only a first step in our research works but is always needed for self-
healing purpose of services. We will use and refine the Dynaco operational framework that
fits the conceptual adaptation framework of deliverable CD-JRA-1.2.2. Decision tools for local
adaptation and relations with monitoring tools will be studied.

The requirements for self-healing and decision support in deployment and runtime manage-
ment have been analyzed and classified in the framework of a conceptual architecture. The
framework unifies three main functionalities that are subject of planned research work: negotia-
tion, brokering and deployment. The aim is to provide and modify (adapt) services dynamically

External Final Version 1, Dated March 16, 2009 28

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.2

and in a (partially) autonomic way at run-time, according to some temporal, spatial or other
needs.

In our view, some the problems illustrated in the use cases in the vision document [6], in
section 3 and in Section 5.1 can be addressed by local adaptation, negotiation, brokering and
deployment.

These are considered as the cornerstones of the research work in Thread C of WP2.3 research
framework and hence, the requirement analysis in this deliverable is a baseline for future research.
By revealing the requirements of these areas, we are able to target these needs in our future work
in order to build a service infrastructure that will be capable of self-adaptation within service
executions with diverse service types and environments. Particularly, we identified connections
with several WPs (e.g. JRA1.2, JRA2.2) in the scope of self healing and local adaptation.

We also found requirements for self-healing on management, packaging, monitoring and
healing strategies. These basic requirements lead us to the importance of the health status
sharing between service instances and three new adaptation actions for reconfiguring, deploying
and decommissioning of these instances. In the later phases of this project we will further
develop ideas on these new requirements against the service infrastructure.

References

[1] Yolanda Becerra, David Carrera, and Eduard Ayguad. Batch job profiling and adaptive
profile enforcement for virtualized environments. In Proceedings of 17th Euromicro Inter-
national Conference on Parallel, Distributed, and Network-Based Processing (PDP 2009),
Weimar, Germany, February 2009.

[2] Jérémy Buisson, Françoise André, and Jean-Louis Pazat. Dynamic adaptation for grid
computing. In Peter M. A. Sloot, Alfons G. Hoekstra, Thierry Priol, Alexander Reinefeld,
and Marian Bubak, editors, Advances in Grid Computing - EGC 2005 (European Grid
Conference, Amsterdam, The Netherlands, February 14-16, 2005, Revised Selected Papers),
volume 3470 of LNCS, pages 538–547, Amsterdam, June 2005. Springer-Verlag.

[3] Jérémy Buisson, Françoise André, and Jean-Louis Pazat. Supporting adaptable applications
in grid resource management systems. In 8th IEEE/ACM International Conference on Grid
Computing, 19-21 September 2007.

[4] P. Combes, F. Lombard, M. Quinson, and F. Suter. A Scalable Approach to Network
Enabled Servers. In Proceedings of the 7th Asian Computing Science Conference, pages
110–124, janvier 2002.

[5] D. Dasgupta, Z. Ji, and F. Gonzalez. Artificial immune system (ais) research in the last
five years. Evolutionary Computation, 2003. CEC ’03. The 2003 Congress on, 1:123–130
Vol.1, Dec. 2003.

[6] Marco Pistore (editor). Integration framework baseline. Technical Report CD-IA-3.1.1,
S-Cube, 2009.

[7] W.G. Fenton, T.M. McGinnity, and L.P. Maguire. Fault diagnosis of electronic systems us-
ing intelligent techniques:a review. IEEE Transactions on Systems, Man, and Cybernetics,
31(3):269–281, 2001.

[8] Ira R. Forman and Nate Forman. Java Reflection in Action. Action series. Manning, 2004.

[9] Stephanie Forrest, Steven A. Hofmeyr, and Anil Somayaji. Computer immunology. Com-
mun. ACM, 40(10):88–96, 1997.

External Final Version 1, Dated March 16, 2009 29

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.2

[10] A. G. Ganek and T. A. Corbi. The dawning of the autonomic computing era. IBM Syst.
J., 42(1):5–18, 2003.

[11] Debanjan Ghosh, Raj Sharman, H. Raghav Rao, and Shambhu Upadhyaya. Self-healing
systems - survey and synthesis. Decis. Support Syst., 42(4):2164–2185, 2007.

[12] Willem-Jan van den Heuvel, Jian Yang, and Mike P. Papazoglou. Service representation,
discovery, and composition for e-marketplaces. In CooplS ’01: Proceedings of the 9th In-
ternational Conference on Cooperative Information Systems, pages 270–284, London, UK,
2001. Springer-Verlag.

[13] Nikola K. Kasabov. Foundations of Neural Networks, Fuzzy Systems, and Knowledge En-
gineering. MIT Press, 1996.

[14] J. O. Kephart and D. M. Chess. The vision of autonomic computing. IEEE Computer,
36(1):41–50, 2003.

[15] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean-
Marc Loingtier, and John Irwin. Aspect-oriented programming. In Mehmet Akşit and
Satoshi Matsuoka, editors, Proceedins of European Conferebce on Object-Oriented Program-
ming, volume 1241, pages 220–242, Berlin, Heidelberg and New-York, 1997. Springer-Verlag.

[16] Heather Kreger, Kirk Wilson, and Igor Sedukhin. Web services distributed management:
Management of web services (wsdm-mows) 1.1. web, August 2006.

[17] G. M. Marakas. Decision support systems in the twenty-first century (2nd edition). Prentice
Hall, 2002.

[18] Aad Van Moorsel. Metrics for the internet age: Quality of experience and quality of business.
Technical report, 5th Performability Workshop, 2001.

[19] OGF. Job Submission Description Language, 2006.

External Final Version 1, Dated March 16, 2009 30

