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helping shape the software-service based Internet which is the backbone of our future interactive 
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Chapter 1

Introduction

Service-oriented computing (SOC) [1] promotes the idea of composing self-contained services into
a loosely coupled agile software system. In that context, services are often described as autonomous
software components that can be described, published, discovered and composed in a platform-neutral way.
They perform functions ranging from simple atomic requests to executing complex business processes
[2]. Software systems built on top of services utilize a service-oriented architecture (SOA) [3, 4]. SOA is
a way of designing a system so that it can provide services to end users and/or other applications in the
network. Currently, Web services [5, 6] are the most prominent realization technology for SOAs. They
use well-known, tested and established standards, such as SOAP as message encoding format or WSDL
for service definition.

One of the most interesting and relevant properties of services is the possibility to combine a number of
existing services to create a more general composite service (aggregation [7]). Composing services allows
for the definition of increasingly complex applications by progressively combining services at increasing
levels of abstraction [8]. In literature, two different types of composition are often differentiated: on
the one hand, the term service orchestration is used to describe interactions at message level, including
the business logic and execution order under control of a single end point – today, WS-BPEL has
succeeded earlier orchestration languages such as WSFL or XLANG and is the standard language for
representing Web service orchestrations; on the other hand, the term service choreography denotes publicly
visible message exchanges, i.e., interactions that are under the control of two or more end points [9].
Besides orchestration and choreography, service coordination, service wiring, and semantic Web service
composition can also be considered as types of service compositions. All of these composition model
types have different purposes, but can often be combined together. For example, one often starts modeling
a choreography, and then refines the choreography to orchestrations of different partners.

Service Composition Models are involved in a lifecycle, which comprises modeling, verification,
execution, and monitoring phases. When it comes to modeling of service compositions, there exist several
approaches: model-driven service composition copes with generating service orchestration models from
more abstract models, which are often abstract business process models created by business analysts;
automated service composition selects services and orchestrates them automatically based on an abstract
goal specification; QoS-aware service composition can be used to select those services which satisfy local
and global QoS constraints of the service composition. After the composition is created, it can be verified
against certain properties, such as whether it is deadlock-free. Therefore, often methods such as model
checking are used. After deployment of the service composition to the corresponding IT infrastructure,
which is typically a process engine in combination with a service bus, the composition is executed. At
runtime, the composition can be adapted by for example rebinding other services, if the predefined service
fails. Monitoring of service compositions is performed either for run-time verification or to measure
certain metrics such as average response time of the service composition.

In the following survey we analyze the current state of the art in service composition in a structured
way: we present and classify research directions and approaches and elaborate on the most important
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papers in each category. Additionally, we present how the papers are related to each other, and what
the main contributions of each work are. Often, research work exhibits characteristics from more than
one category, which is then mentioned explicitly in the text. Please note that not all existing papers to
every category can be discussed – often the authors had to choose between a number of similar research
approaches; in these cases the more prominent approach has been chosen to be included in this survey.

The survey is structured into three main sections. First, in Chapter 2 different models and languages
for service composition are described. Chapter 3 evaluates approaches to creation and development of
service compositions, including model-driven, automated, and QoS-aware service composition. In Chapter
4 formal methods to verification of service compositions are presented. Finally, Chapter 5 summarizes the
survey and identifies research challenges.

Several of the topics addressed in this survey are closely related to the topics addressed in other
S-Cube surveys, or are addressed with a different focus in those surveys. In particular, those surveys deal
with some aspects of service composition and its lifecycle, which could not been addressed in this survey.
The relation of this deliverable to other S-Cube deliverables is as follows:

• PO-JRA-1.1.1 ”State of the art report on software engineering design knowledge and Survey of HCI
and contextual Knowledge” deals with engineering of service-based applications (SBAs) in general.
It describes engineering methods for SBAs, requirements engineering, and mechanisms to support
deployment, execution, and runtime evolution of SBAs. It however does not focus on service
compositions in particular and resulting approaches to creation of these service compositions, which
are described in Chapter 3 of this deliverable.

• PO-JRA-1.2.1 ”State-of-the-Art report, gap analysis of knowledge on principles, techniques and
methodologies for monitoring and adaptation of SBAs” describes the state-of-the-art in monitoring
and adaptability of services. In particular, it also deals with monitoring and adaptability of service
compositions, thus covering important aspects of the service composition lifecycle which are out of
scope of this deliverable.

• PO-JRA-1.3.1 ”Survey of Quality Related Aspects Relevant for Service-based Applications” deals
with specification and negotiating of QoS and SLAs and quality assurance for Service-based Appli-
cations. Concerning the QoS aspect, in this survey, we focus on QoS-aware service composition
which is based on guaranteeing local and global quality constraints in service compositions. For
what concerns the verification of service compositions, PO-JRA-1.3.1 focuses on non-functional
properties such as performance prediction, while approaches which lean more towards checking
correctness of service compositions are examined here in Chapter 4.

• PO-JRA-2.1.1 ”State of the art survey on Business Process Modelling and Management” deals
with BPM which is situated in the layer above service compositions. PO-JRA-2.1.1 explains the
relation between BPM and SOA in general when describing the BPM lifecycle. In this survey, in
Section 3.1, we deal with model-driven service composition, and present works which transform
business process models to service compositions.

• PO-JRA-2.3.1 ”Use case description and state-of-the-art(Self-* Service Infrastructure, Service Dis-
covery)” deals with service infrastructure which is situated in the layer below service compositions,
and related issues such as service discovery, dynamic binding and invocation. Dynamic binding, in
particular, enables runtime adaptability of service compositions by discovering and binding new
services (which are part of those compositions).
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Chapter 2

Service Composition Models

2.1 Introduction

For the focus of this survey, we define service composition as the combination of a set of services for
achieving a certain purpose. Interchangeably, the term ”service aggregation” could be used in this context
[7].

We consider four types of service composition models:

• Service Orchestration: Service orchestration is the most prominent approach to service composi-
tion, and often the term ”service composition” is actually used for service orchestration. Thereby, a
new service is created by orchestrating several services in a process flow. Orchestrated services can
be atomic services, i.e. self-contained programs which do not use other services, or again service
orchestrations. The standard language for orchestrating Web services is BPEL.

• Service Choreography: While in service orchestration the perspective is on the implementation of
a service for one partner, a service choreography defines the interaction protocol between several
partners services. The goal is to define the so called public processes of the interacting partners and
how they communicate together. For the specification of service choreographies, visual notations
can be used such as BPMN and Let’s Dance. Other approaches define a completely new XML-based
language such as WS-CDL, or adapt a language for service orchestrations such as BPEL4Chor.

• Service Wiring: Services specify provided and requested interfaces in form of operations with
inputs and outputs. In order to create executable service assemblies, the requested interfaces of one
service are wired to provided interfaces of other services. The services assembled in this way can
again be recursively exposed as a service which can be wired and invoked. A service assembly is a
deployable artifact, which is deployed to an enterprise service bus.

• Service Coordination: In agreement-based service coordination, a distributed activity is created
by temporarily grouping a set of service instances following a coordination protocol. At the end of
the activity a coordinator decides on the outcome of the protocol and disseminates the result to the
participating services. One example is that of the bid auction. Buyers and sellers are participating
Web services following a certain coordination protocol and being coordinated by an auctioneer. At
the end of the bidding period, the auctioneer decides who is the winner of the bid and informs both
buyer and seller, and the temporary collection of services ceases to exist.

As it is not a new composition model type, we look at Semantic Web Service Composition separately.
The idea of Semantic Web Services (SWS) is to describe Web service interfaces semantically in a
machine-readable manner, thus enabling automatic Web service discovery and composition. Semantic
WS composition approaches either extend existing composition languages, e.g. BPEL4SWS, or create
completely new languages, e.g. OWL-S.
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In the following, we describe the state-of-the-art in service orchestration, choreography, wiring,
coordination, and semantic WS composition. In each section, we introduce the main concepts, present the
main approaches, and finally give a comparison of these approaches when applicable. In the last section,
we deal with the combination of different service composition model types.

2.2 Service Orchestration

A service orchestration composes a new service by orchestrating several services in a process flow.
Services which are part of an orchestration can be atomic services or again service orchestrations. Service
orchestration is thus a recursive model. Atomic services are self-contained and do not use other services
for implementing their business logic.

A service orchestration is a proactive composition that drives the interactions with the services it
orchestrates. It defines execution semantics on a set of activities that perform these interactions. These
execution semantics can be defined in different ways, e.g., calculus-based (XLANG), statechart-based
[10], or graph-based (WSFL).

Service orchestrations can be programmed using a multi-purpose 3GL programming language, such as
Java, but more typically a workflow-like language is used. In the following, we concentrate on languages
which deal with services as first-class citizens.

There have been several efforts related to the creation of complex Web services out of simpler ones
using workflow languages, e.g. WSFL [11], XLANG [12], BPML [13], BPEL [14]. In the context of Web
services, these service orchestrations are called WS-flows. Besides WS-Flow languages, there are other
approaches to service orchestration, such as JOpera [15] which is a visual service composition approach,
not constrained to orchestration of (WSDL-based) Web services.

2.2.1 Orchestration Languages and Approaches

WS-Flow Languages

WS-Flows are similar to workflows, whereby the applications invoked by the activities of the workflow are
Web services. There have been several efforts related to the creation of WS-Flow languages, in particular
WSFL [11], XLANG [12], BPML [13], and WS-BPEL [14]. BPML was a proposed language by BPMI,
but was dropped in favor of BPEL. BPEL can be seen as the successor of WSFL from IBM and XLANG
from Microsoft and combines concepts and constructs from both languages. As BPEL has superseded
these languages and has become a standard, in the following we will describe only BPEL.

BPEL is an XML-based language for specifying WS-Flows. WS-Flows can be thought of having
two dimensions: the ”what?” dimension, and the ”what with?” dimension. The ”what?” dimension is
represented by the control flow and the data flow, and is also referred as business logic. The control flow
includes alternative paths of execution, defines how exceptional situations are handled (fault handling and
compensation), how the process reacts to events signalled by users and the environment (event handling),
and additional rules and constraints. Another aspect of the ”what?” dimension in traditional workflows is
the so-called data flow which defines how data is exchanged among activities and between the workflow
and its participants. The data flow is explicitly present in only some of the existing WS-Flow languages,
such as WSFL, and XLANG. BPEL, however, does not explicitly model the data flow. Activities can
access data variables, which can be defined either globally for the whole process or for specific (nested)
scopes (which restrict their visibility).

The control flow of a BPEL process is specified using a combination of graph-based (WSFL) and
calculus-based (XLANG) approaches. BPEL provides constructs for:

• Interaction modeling for invoking operations on other Web services, receiving and replying invoca-
tions on the process itself from the services which use the process. An executable BPEL process
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is exposed as a WSDL Web service to external service requesters, and can thus be invoked as any
other Web service.

• Data manipulation for reading and writing data variables associated with the process.

• Control flow for controlling the flow of the process using both (or either) directed control links and
compound activities that impose, on the activities that are contained within them, semantics such as
parallelism, sequencing, loops, and choice.

• Fault handling, Event handling, and Compensation

The second dimension of WS-flows, the ”what with?” dimension, is the one assigning to each
interacting activity a participant, namely a Web service. Interacting activities are those tasks in the
model of a WS-flow that stand for interaction with a partner Web service. The definitions of these
activities specify the participating Web services only on the abstract level, namely only their portTypes
and operations are to be supplied, and refer to no actual endpoints that implement these portTypes. This is
reflected by the BPEL specification; this has been also one of the goals of XLANG, WSFL and BPML.

BPEL compositions are based purely on the interfaces of the composed services, that is, their abstract
definitions in WSDL (portTypes, operations, and message types). From an architectural perspective,
the resulting process is itself a Web service that can be exposed using WSDL definitions that define
the portTypes it provides to clients. Additionally, the BPEL process also declares which portTypes it
requires from each of the services it composes. Mechanisms for binding service instances to a process
are intentionally left up to the runtime and therefore out of the process definition. This is where service
wiring mechanisms come into play (Section 2.4).

BPEL process models can be defined as abstract or executable. An executable process model specifies
a service orchestration which can be executed by a BPEL engine. In contrast, an abstract process model
hides some activities (a part of the process model) by defining them as ”opaque”. Abstract process models
are either used to define process templates, or to define behavioral interfaces. A behavioral interface
contains mostly messaging activities which denote how the service requester should communicate with the
process. A behavioral interface thus specifies a public process which can be seen by external requesters.
Private information (process logic) which is not to be exposed to the outside is replaced by opaque
activities.

BPEL supports only orchestration of Web services described in WSDL. There are, however, extensions
to BPEL which relax this restriction. BPEL4People enables incorporating human tasks into a BPEL
process. BPELlight [16] removes the dependency on WSDL altogether, and describes just conversations as
message exchanges with partner services. In a grounding step these message exchanges can be grounded
to different technologies.

JOpera

JOpera [17] is a visual service composition tool built on the Eclipse platform. It supports an integrated
visual service composition development, execution and monitoring.

For the definition of service compositions, JOpera provides the JOpera Visual Composition Language
(JVCL) [15]. Services are composed using processes, which define their interactions using two seperate
graphs for specifying the data flow and the control flow. In JOpera, the data flow has to be explicitly
specifed. The data flow graph defines where the information required by each service comes from. The
data flow is specified by connecting output parameters of one task to input parameters of others. The
control flow is separetely visualized and is mostly inferred from data flow, which is seen as the primary
representation in JOpera. Therefore, JOpera provides control flow extraction algorithms to ensure the
automatic reconciliation between the two. Exceptions where explicit control flow constructs are needed
are branching, synchronization, exception handling, loops, and more advanced workflow patterns.
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When it comes to incorporating service invocations into the composition, JOpera is not constrained
to WSDL Web services but supports also other service types, such as UNIX Commands, Grid Services
(WSRF), Java snippets, SQL Queries (JDBC), XSLT scripts, which are imported into a service library
and can be drag-and-dropped into the process flow. Additional service types can be added using an
extension-point for custom service invocation plugins.

For executing the service composition model, it is transformed to Java byte code.

2.2.2 Comparison

As BPEL has superseded the other WS-Flow languages, we will not compare WS-Flow languages among
themselves. In the following we thus compare BPEL and JOpera:

• Modeling Approach: JOpera provides a visual language which is compiled to Java byte code before
execution. BPEL provides a standard XML syntax for its language. Process models can thus be
exchanged and run on different BPEL process engines. Visual modeling is supported by BPEL
visual editors; there is however no standard visual notation for BPEL language constructs.

• Orchestration Model Properties: JOpera supports explicit data flow and graph-based control flow.
BPEL, on the other hand, supports only implicit data flow, but both graph-based and block-based
control flow modeling. In JOpera the language is independent of services to be orchestrated. The
description of the process, data flow and control flow, is separated from the description of how to
invoke each of its tasks. Many constructs, such as timeouts and data transformations, are shifted
from the language definition to the standard library of service types. In BPEL, interaction modeling
and data transformations are part of the language.

• Interaction with Services: When it comes to service type support, BPEL supports only interaction
with WSDL Web services. In order to support other types of services, language extensions are
needed, e.g. BPEL4J or BPELlight. In JOpera the language is independent of services to be
orchestrated. Several service types, such as UNIX Commands, Grid Services (WSRF), Java
snippets, SQL Queries (JDBC), XSLT scripts, which are part of a service library and can be
drag-and-dropped into the process flow, are supported.

2.3 Service Choreography

A service choreography is a design-time artefact that describes a multiparty collaboration. That collabora-
tion might have an inter-organisational as well as intra-organisational character and is performed in order
to achieve certain (business) goals. Choreography focuses mainly on the conversational aspect - message
exchanges between the participating processes - and doesn’t aim to expose the internal structure of the
processes. Being in full control of own internal business processes, the partners may specify on the level
of choreography only the tasks which are essential for the description of the conversations. There is a set
of business processes realised by orchestrations in lower abstraction level under the global interaction
description provided by a choreography. The goal of service choreography is to give a notion on how
these orchestrations are ”tied” together and so to capture the complex conversations between business
partners from a global view.

There are several usage scenarios for service choreographies:

• Specification (agreement) on how business partners interact with each other

• Standardization and thus support for the engagement of a wider set of users/providers

• Conformance checking and basis for adapting existing orchestrations

• Basis for development of new orchestrations
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• Monitoring, e.g. for legal purposes

• Optimization of collaborations

There is a spectrum of modelling approaches and corresponding choreography languages, which differ
in the way they capture the collaborations. In the following we will introduce well-known categorisations
of choreography languages and then present the most important representative languages. Service
Interaction Patterns proposed by [18] represent a set of most often occurring interaction scenarios and
therefore can be used in assessment of choreography modelling languages. The main categories of Service
Interaction Patterns are those outlining bilateral interactions, as well as multilateral, competing, atomic
and causally related interactions.

As stated in [19], the languages for modelling choreographies can be distinguished in respect to two
orthogonal criteria: (i) Interaction Models vs. Interconnected Interface Models, and (ii) Implementation-
specific vs. Implementation-independent Choreography Languages.

Interaction Models vs. Interconnected Interface Models

The Interaction Modeling approach describes a choreography from a truly global point of view by the
means of combination of elementary interaction blocks, such as request-response and one-way into
more complex interactions where dependencies between single interaction blocks are specified. One
specialty of the interaction modeling style is that the data and control flow is not assigned to any of the
roles but defined globally instead. Therefore the interaction choreography approaches allow to model
locally unenforceable interactions: additional synchronization messages are needed to construct a locally
enforceable collaboration model [19]. The strengths of interaction modeled choreographies unfolds in the
early stages of service developing lifecycle where the stakeholders need an overall global perspective in
order to recognize potential services and capture those interactions.

In contrast to the interaction modeling approach, the Interconnected Interface Choreography Model
specifies the interface of each partaking process role by defining control flow dependencies between
the send and receive activities inside of the participants. Local unenforceability is not an issue in the
context of this modeling style, but one has to deal with the problem of possible incompatibility of the
participants which can lead to e.g. deadlocks. This modeling approach is more convenient when creating
new collaboration-enabled services as well as adapting existing ones.

Implementation-specific vs. Implementation-independent Choreography Languages

Based on the target user group, we can further classify choreography languages into implementation-
independent and implementation-specific ones. The implementation-independent choreography languages
address the Business Process Management Community, who observe the collaborations of the pro-
cesses from the business perspective and make fundamental decisions about the collaboration. The
implementation-specific choreography languages address the choreography modelling while looking
forward to its later execution. Those address such issues as communication protocols, security issues as
well as exception handling. The implementation-specific choreography languages refer to Web Services.

2.3.1 Choreography Languages

The positioning of the main choreography languages regarding the previous categorizations is depicted in
the table 2.3.1. These languages are discussed in following.

BPMN

Business Process Modeling Notation (BPMN) [20] is an implementation-independent graphical modeling
language. It allows description of both intra- and inter-organizational business processes. By means of a
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Implementation-independent Implementation-specific
Interaction Model Let’s Dance, BPSS WS-CDL

Interconnected Interface Model BPMN, MSC WSFL, BPEL4Chor

Table 2.1: Choreography Languages: Categorization

wide spectrum of constructs, BPMN supports modeling of complex control flow scenarios and supports
modeling of both private (internal) processes and abstract (public) processes.

In order to model business entities and roles, BPMN uses ”pools”. It further allows combining the
subsets of activities of a business process into ”swim lanes” and so makes the mapping of activities
to organizational units possible. Besides allowing to describe the control flow of a participant process,
BPMN aims to support modeling of the collaboration of several processes and thus choreographies. While
the control flow describes behavior of each participant and specifies the ordering of the interaction-relevant
activities inside of each participant (BPMN pool), the message flow ”ties” the participating processes into
conversations.

There are several disadvantages in the usage of BPMN for modeling of choreographies. One of
problematical cases arises when many participants of the same type are evolved in a conversation, since
in BPMN each single participant of the conversation has to be represented by a separate pool and one
cannot address a set of participants of a certain type. Another issue is that BPMN lacks formal execution
semantics. Despite of described deficiencies, BPMN is popular in the industry. Since BPMN is not
executable work has been investigated to allow mapping from BPMN to BPEL [21].

Let’s Dance

Let’s Dance [22] is an implementation-independent interaction modeling language, which was originally
created for modeling of choreographies and was meant to cover all Service Interaction Patterns [18]. Being
a visual modeling language with basic building blocks representing single atomic message exchanges,
Let’s Dance encompasses the properties and requirements of collaborations on a global level. Targeting
business analysts, it does not support any technology-specific configurations. As it is an interaction
modeling approach, Let’s Dance does not specify explicitly the behavioral structure of participants. Graph
reduction techniques have to be used in order to generate the corresponding participant behaviors models
[22] out of the global interaction model.

Web Services Flow Language (WSFL)

WSFL [11], as described in the previous section, is a language for defining service orchestrations. It,
however, in addition supports modeling of choreographies based on the interconnection interface model.

WSFL depicts both: a local perspective, which shows how the services are combined into one business
process, and a global perspective, which illustrates the interaction of those business processes. The local
perspective defines the whole execution sequence of the service orcchestration by the means of control
flow as well as data flow constructs and is called ”Flow Model”. Orthogonal to the Flow Model, the Global
Model shows merely the interactions omitting any detailed specification of internal execution ordering
between the service orchestrations. The ”plug links” describe the interaction of a single Web Service with
an operation of another Web Service. Plug links are based on WSDL port types and operations. WSFL is
thus an implementation-specific language.

Web Services Choreography Description Language (WS-CDL)

Web Services Choreography Description Language [23] belongs to the class of interaction modeling
languages and was introduced as successor of WSCI and WSCL. The basic building blocks for defining
process collaborations in WS-CDL are bi-lateral interactions with one or two messages (request-only,
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response-only, request-response). A set of control flow constructs (sequence, parallel, choice and workunit)
allows composing interactions into actions. WS-CDL doesn’t support all workflow patterns and service
interaction patterns, e.g. it doesn’t directly support the patterns where exact number of partaking processes
is unknown in runtime (e.g. ”one-to-many-send/receive” pattern) [24]. The reusability of WS-CDL
is limited because of its tight integration with WSDL: changes of WSDL configuration often imply
the need to change the WS-CDL choreography. Another important point of critic on WS-CDL is that
it’s complicated to perform a proper transformation of WS-CDL choreographies into abstract BPEL
orchestrations since its control flow constructs differ from those in BPEL.

BPEL4Chor

BPEL4Chor [25] is an implementation-specific choreography modeling language which belongs to the
class of interconnected interface modeling approaches. With only a few new constructs, it introduces an
additional layer on the top of Abstract BPEL supporting a seamless integration between choreography and
orchestrations. BPEL4Chor consists of three ”perspectives”: participant topology, participant behavior
description, and participant grounding. Participant behavior description focuses on the structure of an
individual participant by adopting, with slight changes, the existing constructs of abstract BPEL. Important
features of participant behavior description are mainly the possibility to address a single activity of a
process and skipping technical configurations such as addressing concrete portTypes and operations. The
participant topology shows a global perspective of collaborations. It introduces the construct ”participant
set” to allow the specification of an unknown number of participants of a certain type. A participant
reference allows to point to a certain single participating process and so supports the so called link
passing mobility. The message links wire the participant behavior descriptions together and thus define a
collaboration. One of the main features of BPEL4Chor is that it avoids the tight coupling to WSDL and
so improves the reusability of the choreography: all the web-service specific details are placed into the
participant grounding which can be easily exchanged. BPEL4Chor, as well as Let’s Dance, was designed
to support of all Service Interaction Patterns, except Atomic Multicast Notification Pattern, which can be
realized though a workaround. BPEL4Chor doesn’t provide a graphical notation; [26], however, shows
how BPMN can be extended towards modeling of BPEL4Chor choreographies.

Other Choreography Languages (Message Sequence Charts (MSC), BPSS, WSCI, WSCL)

Message sequence charts [27] describe sequences of simple process interactions. They do not provide more
complex control flow constructs as parallel branching, iteration or conditional branching and therefore
they are not well suited for modeling of more complex internal participant behaviors. Business Process
Schema Specification (BPSS) [28], one of the early choreography languages, allows description of only
bilateral conversations which limits the expressiveness of the collaboration description.

Web Services Choreography Interface WSCI [29] is an interface interconnection choreography model-
ing language. WSCI follows the bottom-up approach linking the existing web service interfaces (described
in WSDL) into a conversation. WSCI doesn’t support the top-down way of defining choreographies
and focuses merely on application-to-application integration. The idea of WSCI is related to that of
Web Services Conversation Language (WSCL) [30]. The disadvantage of WSCL is that is supports
only bi-lateral interactions; compared to it WSCI provides more capabilities like support of contexts,
correlations, exception handling and transactions.

2.3.2 Comparison

The criteria for categorization of the choreography modeling approaches introduced above are used in the
following to compare the different languages:

• Implementation-independent vs. Implementation-specific: Lets Dance is the main representative
of the implementation-independent interaction modeling approaches, the main strength of which
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is providing a very high level global view on the collaboration which can be used by business
analysts. Similarly, among the interconnected interface modeling approaches, BPMN is the leading
implementation-independent approach. There is an extension to BPMN [26], which allows modeling
of BPEL4Chor choreographies, thus bridging the gap between implementation-independent and
implementation-specific views on the choreography. Implementation-specific languages are (at
some point) grounded to Web services (WSDL). As the choreography is implementation-specific,
the advantage of implementation-specific approached is that it is easier to derive orchestrations
(implementations) for the involved roles which conform to the choreography.

• Interaction Model vs. Interconnected Interface Model: Main differences between the two ap-
proaches are the possibility to model locally unenforceable interactions in interaction models, and
the possible incompatibility of the participants which can lead to deadlocks in interconnected inter-
face models. Another difference is that it is easier to generate orchestrations from an interconnected
interface model, as it already contains abstract processes for the different roles. These abstract
processes have to be manually completed to executable processes. In case of an interaction model,
however, these abstract processes have first to be generated.

2.4 Service Wiring

A service-based application typically comprises several services which communicate with each other.
Thereby, each service provides an interface to other services, but also defines a requested interface of
services it wants to use. In order to create an executable service-based application, one has to wire the
requested and provided interfaces of server instances. The result is a service assembly, a deployable
artefact, which is deployed on an enterprise service bus. Such an assembly is exposed to the outside
as a service over a certain protocol, e.g. SOAP/HTTP. It can recursively be wired with other service
assemblies.

Services specify provided and requested interfaces in form of operations with inputs and outputs, e.g.
BPEL orchestrations use partnerlink types in order to specify provided and requested service interfaces.
Inside the service assembly, the requested interfaces of one service is wired to provided interfaces of other
services. The services assembled in this way can again be recursively exposed as a service which can be
wired and invoked.

Service wiring enables also service chaining, whereby several service executions are executed one
after each other by connecting the output of one service to the input of the next service and so on. A
simple example is a service composed of a chain of filters, where each filter is a Web service. Wiring
occurs by connecting the output of the first filter to the input of the next and so on. The input of the first
filter and the output of the last one may then be exposed on the composition.

2.4.1 Service Component Architecture

Service Component Architecture (SCA) [31] is a set of specifications that provide a model for building
composite applications based on a SOA. It is based on the idea that a service-based application comprises
several services, which are assembled together to create solutions for implementing a particular business
function.

SCA provides a model for both the creation of service components and composition of these com-
ponents in composite applications. SCA supports a wide range of technologies for the implementation
of service components and for the communication mechanisms which are used to connect them. SCA
components may be implemented in programming languages such as Java, C++, or PHP, but also in BPEL.
As communication mechanisms, SCA compositions support various communication and service access
technologies that are in common use, including, for example, Web services, and Messaging systems such
as JMS.
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The SCA Assembly Model [32] is the main specification which defines the configuration of an SCA
System in terms of Service Components which implement and/or use services and Ccomposites which
describe the assembly of Components, including the connections between Components and describing
how Services and References are exposed for use. The configuration of an SCA system has a standardized
XML representation. That configuration can be seen as a deployment descriptor for the SCA System. The
SCA System is deployed to an SCA Runtime.

The SCA Assembly Model consists of a series of artifacts. The main artifact is the Composite, which
is the unit of deployment and which can be accessed remotely. A Composite contains one or more Service
Components. Components offer their function as Services, which can either be used by other Service
Components within the same Composite or which can be made available for use outside the module.
Service Components may also depend on Services provided by other Components. These dependencies
are called References. References can either be wired to services provided by other components in the
same module, or References can be linked to Services provided outside the Composite, which can be
provided by other Composites or arbitrary external services. All Service Components in the Composite
are linked together, by connecting References with corresponding Services using Wires.

A Component consists of an implementation, where an implementation is the piece of program
code implementing a business function (e.g., in Java or BPEL). In addition, Composites can again be
used as Component implementations, in the same way as a Java classes or BPEL processes. SCA thus
supports a recursive composite model, allowing a hierarchy of Composites that is arbitrarily deep. The
Component can configure the implementation with specific values for settable properties declared by
the implementation. The Component can also configure the implementation with wiring of References
declared by the implementation to specific target Services.

Finally, for supporting non-functional properties such as security, SCA provides a Policy Framework
[33] to support specification of constraints, capabilities and Quality of Service (QoS) expectations, from
component design through to concrete deployment.

2.5 Service Coordination

Service coordination denotes a model in which a distributed activity is created by temporarily grouping a
set of service instances following a coordination protocol. At the end of the activity, a coordinator decides
on the outcome of the protocol (e.g., whether it is successful or aborted) and disseminates the result to the
participating services.

Service coordination is much more loosely constrained than service choreography, as the participating
services do not necessarily communicate with each other when performing their business logic. There is
only a communication between the coordinator and the participant services, which takes place according
to a coordination protocol.

The typical use case for the coordination model is the implementation of transaction processing.
Thereby, coordinaton protocols are used for implementing conventional ACID transactions, but also
long-running business transactions, where compensation is the preferred way in reaching a consistent
outcome. However, also non-transactional use cases can leverage the coordination frameworks. [34]
shows how coordination can be used for implementing auctions.

2.5.1 Web Service Coordination Approaches

WS-Coordination

WS-Coordination [35] defines an extensible framework for coordinating interactions between Web services.
The framework enables participants to reach agreement on the outcome of activities using a coordinator
and an extensible set of coordination protocols.

Coordinated interactions are called (coordinated) activities. An activity ties together several Web
services into a (distributed) application. A participant is a web-service that contributes to an activity.
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All participants of an activity must agree on an outcome of the activity. Therefore, a coordinator which
mediates the agreement on the outcome is needed. Participants and coordinator exchange messages
specified in a coordination protocol in order to agree on an outcome of the activity.

A coordination protocol consists of a set of messages and a specification of how these messages are
to be exchanged. WS-Coordination does not specify concrete protocols, however allows the definition
of arbitrary protocols. Two such protocol specifications already exist specifying transaction protocols,
namely the WS-AtomicTransaction [36] for atomic (2PC) transactions and the WS-BusinessActivity [37]
specification for long-running business transactions. Protocols in these specifications are defined as state
charts. Each state change is communicated between coordinator and participants.

The WS-Coordination framework defines three services a coordinator has to provide: activation
service, registration service, and protocol services. When an application, in the role of an initiator,
wants to start a coordinated activity, it requests a coordination context from an activation service. The
coordination context contains an activity identifier, the coordination type (e.g. atomic transaction) as
requested by the initiator, and the endpoint reference of the registration service. When the initiator
distributes work, it sends the coordination context with the application message to the participant Web
service. Before starting work, the participant registers at the registration service of the coordinator. At
some later point the protocol service is started which coordinates the outcome according to the specific
protocol of the coordination type. While the logic of the coordination and registration service are fixed, the
framework allows the definition of arbitrary coordination types, which specify different protocol services.

WS-CAF

The Web Services Composite Application Framework (WS-CAF) is another coordination framework for
Web services. It is based on three specifications: (i) WS-Context (WS-CTX) [38], (ii) WS-Coordination
Framework (WS-CF) [39], and (iii) WS-Transaction Management (WS-TXM) [40, 41, 42].

WS-CTX provides a mechanism for creating and managing activities and contexts belonging to a
set of Web services. A context is needed for grouping several Web services in an activity. WS-CTX
defines three components: (i) a Context Service: which creates and manages activities and corresponding
contexts. (ii) a context which contains information on an activity. A context contains following attributes:
a context-identifier as URI; activity-service, which idenifies the corresponding context service; activity-list
which contains all services participating in the activity; child-contexts which contains all child-activities;
timeout which defines how long the context is valid. (iii) Activity Lifecycle Service: Web services which
want to participate in an activity register an activity lifecycle service at the context service. The context
service then informs the lifecycle service on the state of the activity.

WS-Coordination Framework (WS-CF) supports coordination of an activity consisting of several
Web services. Those Web services belong to a context as defined in WS-CTX. WS-CF defines the
following components: (i) a coordinator which provides an interface for registration of participants. The
coordinator coordinates the registered participants according to a protocol and disseminates the outcome
of the protocol to the participants. (ii) A participant can be a single Web service, or an activity, i.e. a
group of Web services. (iii) a coordination service which provides an Activity Lifecycle Service, which
registers at the Context Service of WS-Context. A coordination service implements the behavior of a
certain coordination protocol, as defined e.g. in WS-TXM. WS-TXM defines three transaction protocols,
which can be integrated into WS-CF. Those are (i) WS-ACID for managing ACID-transactions, WS-LRA
for long-running business transactions and WS-BP for mixed business transactions.

2.5.2 Comparison

WS-Coordination and WS-CF have many concepts in common. They both support the same coordina-
tion model, in which a coordinator manages the agreement protocol among several participants. Both
approaches enable the definition of arbitrary coordination protocols, and already provide protocols for
ACID transactions and long-running business transactions.
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WS-CF is based on another specification, i.e. WS-CTX. WS-CTX defines mechanisms to share a
context used for identifying an activity. WS-CTX aims at applications that simply need a shared context.
It defines a Context Service, which is responsible for managing shared contexts and provides interfaces to
access these contexts. Thus it is possible for a client to pass only a subset of the context to participants,
which does not contain all information necessary for participants to get involved in the activity, but only
points to a Context Service, where the information can be retrieved. This mechanism can be useful when
a context contains a large amount of data. This feature is not possible in WS-Coordination, as there is
no separate context service. WS-Coordination defines the management of contexts and the coordination
mechanisms together.

In contrast to WS-Coordination, WS-CF specifies generic coordination interfaces which enable
querying of the status of a coordination. If such interfaces are needed for a particular coordination protocol
on top of WS-Coordination, the protocol has to define such interfaces separately.

In summary, while WS-Coordination and WS-CF tackle the same problem domain and have the same
coordination models, WS-CTX and WS-CF introduce more generic definitions concerning the architecture
of the coordination framework and the communication within the coordination framework.

2.6 Semantic WS Composition

Whilst promising to revolutionize e-Commerce and enterprise-wide integration, current standard technolo-
gies for Web Services (WSs) (e.g. WSDL) provide only syntactic-level descriptions of their functionalities,
without any formal definition to what the syntactic definitions might mean. In many cases, WSs offer little
more than a formally defined invocation interface, with some human oriented metadata that describes what
the service does, and which organization developed it (e.g. through UDDI descriptions). Applications
may invoke WSs using a common, extendable communication framework (e.g. SOAP). However, the
lack of machine readable semantics necessitates human intervention for automated service discovery and
composition within open systems, thus hampering their usage in complex business contexts.

Semantic Web Services (SWSs) relax this restriction by augmenting WSs with rich formal descriptions
of their capabilities, such that they can be utilized by applications or other services without human assis-
tance or highly constrained agreements on interfaces or protocols, thus facilitating automated composition,
discovery, dynamic binding, and invocation of services within an open environment. A prerequisite to this,
however, is the emergence and evolution of the Semantic Web (SW), which provides the infrastructure for
the semantic interoperability of WSs.

Semantic annotation of WSs descriptions has been the issue of many initiatives, projects and languages
introduced, the most significant among them are: the OWL-S Semantic Markup for Web Services [43],
the Web Service Modeling Ontology (WSMO) [44] and the Semantic Web Services Ontology [45]. In
this section, we will analyze these SWS languages in terms of how they enable the automatic composition
of WSs. In addition, we will also analyze an effort to extend the BPEL standard WS composition
language with ontological annotations. Finally, we will compare all of these languages based on their WS
composition capabilities.

2.6.1 Main Semantic Web Service Composition Languages

OWL-S

OWL-S consists of a set of ontologies designed for describing and reasoning over service descriptions.
It consists of three main upper ontologies: the Profile, Process Model and Grounding. The Profile is
used to describe services for the purposes of discovery; service descriptions (and queries) are constructed
from a description of functional properties (i.e. inputs, outputs, preconditions, and effects - IOPEs), and
non-functional properties. In addition, the profile class can be subclassed and specialized, thus supporting
the creation of profile taxonomies which subsequently describe different classes of services.
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OWL-S process models describe the behavioral interface of a services in terms of a process model and
are not executable, similarly to an abstract BPEL process. This is used both for reasoning about possible
compositions (validation, verification, etc) and controlling the enactment/invocation of a service. Three
process classes have been defined: the composite, simple and atomic process. The atomic process is a
single, black-box process description with exposed IOPEs. Simple processes provide a means of describing
service or process abstractions which can be either realized by an atomic process (e.g. through service
discovery and dynamic binding at run-time), or expanded into a composite process. Composite processes
are hierarchically defined workflows (consisting of atomic, simple and other composite processes)
constructed using a number of different composition constructs.

The profile and process models provide semantic frameworks whereby services can be discovered and
invoked, based upon conceptual descriptions defined within OWL ontologies. The grounding provides a
pragmatic binding between this concept space and the physical data/machine/port space, thus facilitating
service execution. The process model is mapped to a WSDL description of the service, through a thin
grounding. Each atomic process is mapped to a WSDL operation, and the OWL-S properties used to
represent inputs and outputs are grounded in terms of XML data types.

WSMO

WSMO (Web Service Modeling Ontology) is a conceptual model for describing semantically-enhanced
WSs. The WSMO framework consists of four main modeling elements: Ontologies, Web Services,
Goals and Mediators. Ontologies provide terminologies for defining the formal semantics of information
resources. WSMO ontologies are classic ontologies with classes, relations, instances and axioms, plus
functions (n-ary relations) and some additional information coded as non-functional properties (QoS and
Dublic-Core-based).

WSMO Web service descriptions consist of functional, non-functional and the behavioral aspects of a
Web service. The functional aspect of a WSMO WS is described through one capability using similar
concepts with OWL-S IOPEs. A capability is linked to several goals via mediators.

An interface (behavioral aspect) describes how the functionality of the WS can be achieved by
providing a twofold view on the operational competence of the WS: a) choreography and b) orchestration.
WSMO allows more than one interface to be defined, so multiple choreographies can be defined for a
WS and hence multiple modes of interactions may exist for the same WS. The conceptual model for
WSMO choreography is based on Abstract State Machines (ASMs) [46], defining a set of states where
each one is described by an algebra, and guarded transitions to express state changes by means of updates.
A WSMO choreography specifies a behavioral interface of the service, and not a complete choreography
model. Similarly to WSMO choreography, WSMO Orchestration also uses ASMs. The difference with
respect to choreography is that the WSML rules are extended to support the use of mediators to link the
orchestration to other goals or WSs.

Goals are limited descriptions of WSs (a capability and a interface) that would potentially satisfy
the user desires. WSMO model definition follows a goal-driven approach, which means that requests
and services are strongly decoupled. Finally, Mediators connect heterogeneous components of a WSMO
description which have structural, semantic or conceptual incompatibilities. Mismatches can arise at the
data or process level. There exist four types of mediators: ontology, goals, WS-to-goal and WS-to-WS
mediators.

SWSO

The Semantic Web Services Framework (SWSF) is the proposal from the Semantic Web Services Initiative
(SWSI) for the development of SWSs. SWSF model includes two major components, the Semantic Web
Services Language (SWSL) and the Semantic Web Services Ontology (SWSO). SWSL is a general-
purpose logical language and its main objective is act as the basis of the SWSO ontology. SWSL defines
two sub-languages, SWSL-FOL (First Order Logic SWSL), which is intended to be used mainly for
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process-ontology definition, and SWSL-Rules, a rule-based sub-language to support reasoning over first
order logic ontologies.

SWSO defines the conceptual model for defining SWSs in SWSL. SWSO ontology, expressed in
SWSL-FOL, is called FLOW-S (First-order Logic Ontology for Web Services). FLOW-S includes
mechanisms from PSL (Process Specification Language) [47] family of languages for describing process
workflows. The structure of FLOW-S is very similar to OWL-S and also consists of three main components:
Service Descriptors, Process Model and Grounding. Service Descriptors provide basic information about
a WS to be used during service discovery with client preferences.

The Process Model adapts PSL and is created by extending PSL-Outer Core through: a) Ordering
Constraints, which are simple constraints based on sequencing properties of atomic processes; b) Occur-
rence Constraints, which are constraints involving activities that must take place; c) State Constraints,
used for associating activities which are fired when a condition is satisfied and d) Exceptions, a major
component of the ontology for modeling exception handling through state constraints, messages, or other
extended approaches.

Finally, the Grounding facilities allow to declare the low-level details of WSs definitions: message
formats, transport protocols, etc. SWSO implements mechanisms to map high-level ontology descriptions
with WSDL.

BPEL4SWS

The WS stack of standards currently relies on BPEL for executing orchestrations of WSs. BPEL is using
WSDL descriptions to identify partner/component services in the process models. Unfortunately, effective
dynamic service binding cannot be performed by solely matching WSDL messaging interfaces. Service
partners should be selected based on functional, nonfunctional and behavioral descriptions of what a
service does, and how it does it. Restricting service descriptions to the expressivity of strictly syntactic
WSDL interfaces limits the integration of service partners that operate on messages that have different
syntax but are semantically compatible.

The solution to the dynamic selection of WSs comes with SWSs. SWSs describe services not in
terms of an interface but rather describe their functionality and capability semantically and in a machine
processable manner. For this reason, SWSs increase the level of integration and can be considered an
integration layer on top of WSs where services are discovered based on their functionality and not based
on their signature.

Based on the above analysis, a new language called BPEL4SWS [48, 49] was introduced that extends
BPEL. This language uses BPELlight [16] as basis and allows to attach SWS descriptions to BPELlight such
that SWS frameworks like OWL-S and WSMO and corresponding implementations can be used to discover
and select SWSs that implement the functionality required for an activity. Actually, SWS descriptions can
be both, encoded in the process model as well as annotated using WS-PolicyAttachment [50]. As WSMO
distinguishes between services provider (Web Service) and service consumer (Goal) and thus enables
asynchronous communication between WSs, it is preferred to OWL-S. Both, the SWS description and the
process itself are partly grounded to WSDL to facilitate WS-* based communication. BPEL4SWS enables
the use of SWSs as well as traditional WSs. Hence, BPEL4SWS processes are able to use both semantic
WSs and conventional WSs intermixed within a single process. BPEL4SWS processes themselves can be
exposed both as SWSs and conventional WSs.

Current SWS frameworks use ontologies as data model to facilitate semantic discovery. For that
reason, SAWSDL [51] is used to enable a seamless mapping of data between its XML representation and
its ontological representation which is also needed because in BPEL4SWS WSs and SWSs can be used
intermixed.
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2.6.2 Comparison

WS composition addresses the situation when a client request cannot be satisfied by a single pre-existing
service, but can be satisfied by suitably combining some available, pre-existing services. Two aspects of
composition are identified: composition synthesis is concerned with synthesizing a specification of how
to coordinate the component services to fulfill the client request; and orchestration, is concerned with
how to actually achieve the coordination among services, by executing the specification produced by the
composition synthesis and by suitably supervising and monitoring that execution. In this section, we will
compare all presented approaches first on their discovery capability and second and most importantly on
their composition (synthesis and orchestration) capability. However, we should state that we are not going
to compare the SWSF approach, although it is quite promising and powerful, as it still in its infancy and
no interesting research results accompany it.

From all SWSs languages, OWL-S is the most mature one and has been used in many WS discovery
research approaches that include both functional and non-functional characteristics of WSs. However, it
has been proven that OWL-S presents some drawbacks [52] that prevent it from being used in practical
real-world scenarios. Concerning composition synthesis, OWL-S has been successfully used in AI
planning [53] for automatically producing and executing WS composition plans. Moreover, it can be used
for the analysis and validation of WS compositions as it can be mapped to (colored) Petri-nets [53, 54].
Unfortunately, as far as orchestration is concerned, OWL-S presents two major drawbacks. First of all, its
process model is neither an orchestration model (although it resembles one) nor a choreography model. It
just described the behavioral interface of the service. Secondly, OWL-S describes the execution of a Web
service as a collection of remote procedure calls. Unfortunately, this is only correct for a small percentage
of the cases in business processes [48] since typically the communication is asynchronous.

WSMO has the same discovery capabilities as OWL-S and has also been used in many WS discovery
research approaches. It is starting to attract many SWS researchers as there exist a lot of SW tools that
support it. Concerning WS composition, WSMO contains a behavioral interface model that can be easily
mapped to ASMs. As the WSMO Choreography is based on ASMs, it inherits the core principles of ASMs
which are: (1) it is state-based, (2) it represents a state by an algebra, and (3) it models state changes
by guarded transition rules that change the values of functions and relations defined by the signature
of the algebra. However, the current transition rules in WSMO Choreography can only represent local
constraints. In addition, WSMO Choreography needs to be formalized in order to allow reasoning and
verification about it. Moreover, WSMO contains an orchestration model which is quite primitive. So,
WSMO can only be used in a limited way to orchestrate the interactions of WS-based processes. In
addition, to the best of our knowledge, none research approach for automatic WS composition synthesis
and analysis involving WSMO has been realized, yet. Thus, although WSMO is getting more researcher
attraction than OWL-S, its lack of strong capabilities in WS composition confute its advantages.

BPEL’s lack of dynamic semantic-based service binding led to the synergy with WSMO and SAWSDL.
The result, BPEL4SWS, is not actually a SWS language but a XML-based language with semantic
annotations, just like SAWSDL. However, the goal of dynamic service binding support has been achieved.
Now, BPEL4SWS in comparison to OWL-S supports orchestration. Concerning the composition synthesis
capability, there are many research approaches that have been applied to BPEL. So BPEL4SWS seems to
be the right language for the WS composition process. It remains to be accompanied by a full-fledged
composition engine that will automatically compose, analyze, execute and monitor WS-based business
processes. In our opinion, another possibility is to extend BPEL with OWL-S and SAWSDL, especially
if the synergy with WSMO does not go well and OWL-S specification is altered to allow asynchronous
business process conversations.
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2.7 Combined Service Composition Models

The composition models defined above constitute different approaches to service composition; however,
they can be combined in different manner. In this section, we examine the different combinations.

Orchestration and Choreography

Service choreography specifies the interaction protocol between two or more partners. In case of an
Interconnected Interface Model approach, for each partner only the public process is defined. A service
orchestration on the other hand specifes the private process of each partner and is executable.

Considering a development approach, one can start with modeling a choreography, and then refine the
choreography to orchestrations of different partners. In case of an Interconnected Interface Model, such
as BPEl4Chor or WS-Global Model, the natural way to do this, is to refine the abstract public processes to
private processes, i.e. service orchestrations for each partner. As the language is the same, BPEL and
WSFL, this is relatively easy. In case of an interconnection model, such as WS-CDL, the orchestrations
can be generated to some point and then further manually refined, e.g. in [55] an approach for mapping of
WS-CDL to BPEL is shown.

Orchestration and Wiring

The service wiring model provides a mechanism for wiring service components together by linking their
requested and provided interfaces and deploying the resulting service assembly as an executable artifact
on a service bus. A service orchestration, defined in a WS-flow language, specifies an interaction with one
or more partner Web services. The required interfaces of orchestrated Web services are specified in terms
of WSDL port types and operations. The service orchestration also provides such an interface to service
requesters.

A service orchestration is thus a service component which can be part of a service assembly. Typically,
its provided interface would be exposed over one or more protocol bindings (e.g., SOAP/HTTP) to the
requesters, and the requested interfaces would be wired to corresponding partner service instances.

SCA defines a BPEL implementation model for service components which are implemented as BPEL
orchestrations [56]. It defines how BPEL concepts are mapped to SCA concepts and thus can be exposed
as SCA components as part of an SCA composite. Thereby, BPEL partner links are mapped to SCA
services and references, respectively. In case of partner links which consume other services, the SCA
references are wired to those services. The partner link the BPEL process exposes to service requesters is
exposed as an SCA service and can be wired to SCA references of service requesters or be exposed over a
protocol binding to external requesters. SCA thus provides a mechanism to deploy BPEL processes on a
service bus.

Orchestration and Coordination

The ability to coordinate multiple Web services can be extended to coordination between and within
service orchestrations. Service orchestrations implementing business processes are often long-running.
Therefore, BPEL employs a long-running transaction model to handle the internal transactions of a
WS-BPEL process. WS-Business Activity (WS-BA) provides a set of mechanisms and protocols to
coordinate a set of Web Services into a long-running compensation-based transaction. [57] shows how
(an extended) WS-BA allow parts of a WS-BPEL process to participate in a WS-BA coordination, which
is supervised by an external coordinator. In addition, the approach allows external partners to participate
in these modified internal WS-BA transactions initiated by a WS-BPEL process and also allows for easy
incorporation of BPEL sub-processes into the proposed coordination model.
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Chapter 3

Service Composition Approaches

3.1 Introduction

In this chapter we describe how service composition models are created (developed). Thereby, we
concentrate on the following three main approaches: (i) model-driven service composition, (ii) automated
service composition, and (iii) QoS-aware service composition.

Model-Driven Service Composition copes with generating service orchestration models from more
abstract models. The goal of model-driven development is to transform a platform-independent model
(PIM) into a platform-specific model (PSM). In the context of service orchestration, one approach is
to model the service orchestration by using a model such as UML activity diagram and then specify a
transformation to executable workflow models, such as BPEL. The benefit of this approach is that the
service orchestration is specified in a platform independent way, and thus could be transformed to different
platforms and WS-Flow languages if needed. A related approach is business driven development. In
that case one starts with abstract business process models, which are first modeled by business analysts,
e.g. in EPC or BPMN. Those models can be both choreography and orchestration models. Business
process models are then transformed to executable WS-Flow models, whereby typically both manual and
automatic transformations are needed.

One can further distinguish between manual and automated service composition. Manual composition
is created by a user, typically by an IT engineer who creates the control flow and selects the services.
In automated service composition, the services are selected and orchestrated automatically based on an
abstract goal specification.

The composition can futher happen at design time or at runtime. In the extreme case that only
one service is composed, service selection is performed. At runtime, that boils down to selecting and
dynamically binding the service to the service orchestration. Automated runtime composition enables
runtime adaptability of service compositions.

When creating a service composition and selecting appropriate services, the first concern is to find
services which implement the functionalities needed, and define a control flow which specifies in which
order these services are to be executed. Besides functional composition, one is often also interested in
QoS-properties of the composition, i.e. which QoS properties does the overall service composition posess,
e.g. cost or duration. To determine these properties, the properties of the orchestrated services have to
be aggregated. If for each needed functionality in the service composition, there are several alternative
services with different QoS properties, then QoS-aware service composition can be used to select those
services which satisfy local and global QoS constraints.
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3.2 Model-Driven Service Composition

System theory suggests to use model-driven development (MDD) in order to raise the level of abstraction
to cope with increasing complexity of systems [58]. In contrast to traditional engineering approaches,
the primary entity of MDD are higher-level models. These models are then compiled into executable
code (often using automated or semi-automated tool chains). The Model-Driven Architecture (MDA)
is one possible approach to implement MDD. MDA has been put forward by the Object Management
Group (OMG) in 2001, and has since then been seen as the de facto standard for model-driven software
engineering. In MDA, all software functionality is specified using platform-independent models (PIMs).
Then a platform definition model (PDM) is used to translate the PIM to various platform-specific models
(PSMs), which can either be compiled into executable code or run directly.

Arguably, a similar approach can also be used to tackle service composition challenges and issues
[59].

3.2.1 Model-Driven Development of Web Services

Model-driven development of Web services and Web applications has been around since about 2000,
when Ceri et al. first published their work on WebML [60]. WebML is a modelling language that allows
to specify data-intensive Web applications in an abstract high-level language, using the definition of a data
schema (basically a standard entity relationship schema), and a number of hypertext schemas. Hypertext
models (site views) express the user interfaces that allow accessing and modifying the data. Furthermore,
site views are further partitioned into pages. Pages can be seen as collections of data fragments, which in
turn contain pointers into the data model of an application. Pages in a site view are connected using links.

The WebML model has prominently been implemented in the WebRatio CASE tool [61].
Using current terminology, one can argue that the work of Ceri et al. provides a graphical and

model-driven approach to the development of RESTful Web services (i.e., Web services that follow the
Representation State Transfer architectural style defined by Fielding [62]).

Later on, Manolescu et al. have extended WebML to consider not only typical REST-style resources,
but also WSDL-based Web services [63]. However, the scope of this work is not so much in the modelling
of service compositions, but rather the integration of services in standard Web applications (even though
they still ”compose” services using WebML site views).

3.2.2 Approaches to Model-Driven Composition

Early work in the area of Web service composition models has seen the adaption of traditional process
algebras for Web service composition. One example of such research is the work of Hamadi and
Benatallah [64], who used Petri Nets to construct Web service orchestrations with specific, formally
verifiable properties.

Other researchers have analyzed languages and models on higher levels of abstraction (such as the
UML, or BPMN) and found that these models, while being easier to write and interpret, can also be used
to express the most important flow patterns [65]. Therefore, these languages are a natural choice for
researchers aiming at bridging the gap between business workflows and models on the one hand, and
technical service orchestrations on the other. Following the MDD naming, the approach of specifying
compositions on business model level is called Business Driven Development (BDD) [66].

Skogan et al. have used UML as a language to model Web service orchestrations [67]. This paper
proposes a method that utilizes UML Activity models to define compositions, and an MDA-based
approach to generate executable code in varying composition languages. Their initial prototype supports
the generation of both WS-BPEL and WorkSCo1 executable code. Their approach endorsed a complete
roundtrip model: existing WSDL specifications are refactored into UML models, which in turn are

1http://www.esw.inesc-id.pt/worksco/
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arranged to create new service orchestrations; these orchestrations can then be transformed into executable
code (either WS-BPEL or WorkSCo), and deployed on a workflow engine. That is, they use UML as an
integration platform, which is independent of the actual execution environment. The actual transformation
of high-level UML models to workflow code can be handled using XSLT transformations: this is possible
since both WS-BPEL and WorkSCo are represented using XML.

The approach of Skogan et al. has later been extended to also consider semantic Web service composi-
tion and QoS attributes [68]. The main advantage of this extension is the increased support for run-time
discovery of services and run-time service binding: in [67] the service bindings (the partner links in WS-
BPEL notion) are defined at design-time, while [68] considers abstract bindings to specific semantically
defined functionality; concrete services implementing this abstract functionality are discovered at run-time
using semantic discovery and matchmaking technologies. Additionally, services are ranked based on QoS
properties, i.e., if more than one service instance is discovered during run-time the one exhibiting the best
QoS properties is selected. Unfortunately, the work is based on a set of assumptions (e.g., the existence of
a semantic matchmaking and service discovery entity) which are not fulfilled today.

Already in 2003, Koehler et al. have presented an approach that is more clearly aligned to the OMG
MDA [69] and BDD. Their work presents the transformation of business models (represented in ADF
and UML) to technology-level WS-BPEL code. Unlike other approaches, their work considers not only
the top-down transformation from high-level models to code, but also the other direction: their work
also considers the bottom-up re-engineering of existing WS-BPEL compositions into business processes.
Their transformation architecture consists of four levels: business models are firstly transformed to
process graphs, which are in turn refined to flow graphs; these subflows can then be compiled to solution
components using platform-specific transformation (synthesis). In the reverse direction (bottom-up),
solution components are combined to create flow graphs, which are again merged to process graphs, and
finally the business model can be restored. Later on, the same authors have refined their ideas [70]. In this
paper they detail how graph-based process models can be transformed into executable code using graph
transformation and compiler theory.

A conceptually similar model-driven and MDA-based methodology for service composition has been
introduced by de Castro et. al [71]. Their paper presents MIDAS, a MDA framework that proposes
multi-level modeling of service compositions: as defined by the Object Management Groups MDA,
composite services are specified using Computation Independent Models (CIMs), which are mapped
(transformed) into Platform Independent Models (PIMs), which in turn are again mapped into Platform
Specific Models (PSMs). In MIDAS, PSMs are represented using WS-BPEL. PIMs contain User Service
Models, Extended Use Case models (both are derivations of standard UML Use Case models), service
process models and service composition models (both represented using UML Activity models).

Ouyang et al. use a different language, OMGs BPMN, to represent business models [72]. They argue
that BPMN is (even though the language is relatively young) more common in the business world than the
more software-centric UML. Additionally, BPMN is well supported by business analyst tools. However,
the authors state that the transformation from BPMN is complex since BPMN is (as a graph-oriented
language) fundamentally different than the block-oriented WS-BPEL. However, they argue that their
approach still is complete, fully automated and produces WS-BPEL code that is comprehensible for
humans.

Orriens et al. present a model driven service composition approach based on composition rules [73].
These rules are expressed in OCL (the Object Constraint Language), and are used to model constraints on
possible compositions. Examples of such rules are activity.function = "FlightBooking"
(i.e., the function of the activity always has to be ”FlightBooking”) or activity.input - >
notEmpty (i.e., there always has to be an input message for this activity). Generally, they distin-
guish between structural rules (structuring activities with the composition), data rules (rules that relate
messages to each other), behavioral rules (rules that guard the integrity of the composition, and precondi-
tions, postconditions and invariants of activities), resource rules (rules that guide the usage of resources)
and exception rules (rules that specify the behavior of the composition in exceptional cases). When all
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necessary rules that apply for a composition are specified, an automated dynamic service composition
engine is used to create an orchestration that satisfies the rules specified by the model. However, of course
this approach implies that the composition has to be fully specified using business rules.

Another form of model-driven service composition is mapping WS-CDL choreographies to concrete
partner WS-BPEL orchestrations. This approach is discussed e.g. by Mendling and Hafner [55]. WS-CDL
defines the externally visible behavior of business entities, i.e., which messages are transferred to which
business partner at which point in time, and what options are available. Additionally, WS-CDL relates
operations to states in the business processes. Mendling and Hafner propose to use the inter-business
WS-CDL model as a model to generate WS-BPEL code for each specific participating business partner.
They show that many WS-CDL constructs can be mapped directly (cdl:sequence, cdl:parallel,
cdl:assign, . . . ), e.g., using XSLT transformations, but others are more complex to map: for example,
it is not easy to identically map the semantics of a cdl:workunit construct. In this case, the authors
propose to map the construct to bpel:scope, but a human BPEL engineer is required to eventually
add additional information that cannot be deduced from the choreography automatically. In general,
this approach can be considered only semi-automated – a fully autonomous mapping from WS-CDL to
WS-BPEL without human interaction is not possible.

The idea of generating WS-BPEL templates from WS-CDL choreographies has been further extended
by Rosenberg et al. [74]. In their work, they have adapted the rules presented in [55] and proposed a
so-called relevance mapping. Their idea is to map only those WS-CDL constructs which are directly
relevant to the single BPEL processes. Another important property of their work is the consideration of
Service Level Agreements (SLAs) and QoS attributes at WS-CDL level: choreographies are annotated
with SLA references using IBM’s WSLA, which are then mapped to WS-Policy QoS policies in the
generated WS-BPEL files (WS-Policy QoS policies are a WS-Policy extension defined within this research
work).

The presented approaches so far aim to generate service orchestration models, either from high-level
business process models or service choreography models. In contrast to those works, in [75] an approach
is shown how service coordination models can be created in a model-driven manner. Thereby, a so called
coordination protocol graph which models the states and state changes of the coordination protocol is
transformed to two BPEL process models, one for the coordinator role and one for the participant role,
respectively. WS-Coordination is used as the coordination framework. Both generated process models
contain in particular messaging activities which are needed to propagate state changes of the protocol
between coordinator and participant. The generated process models are not yet executable; some of the
protocol logic has to be manually added by the developer. Those places in the BPEL code are marked
during transformation as BPEL ”opaque” activities.

The presented approaches are summarized in Table 3.1. In the table, ”n\a” means that the column is
not applicable for a certain research approach (e.g., the work by Hamadi and Benatallah [64] can neither be
considered top-down nor bottom-up, since the work does not consider transformations). ”Not Explained”
represents properties which are not mentioned in the concerning paper. In the table we differentiate
between pure MDA approaches, and methodologies which are based on modified MDA.
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3.2.3 Products and Tools

IBM Alphaworks has released a UML-to-BPEL mapping tool as part of the Emerging Technologies
Toolkit (ETTK) [76]. The tool uses a specific UML profile for automated business processes that has
previously been published by Gardner [77]. In this profile processes are defined using the <<Process>>
stereotype, while an activity model is used to represent the process itself. In this respect, this approach
is very similar to the research work of [67]. ETTK includes an Eclipse plugin that can be used to create
deployable WS-BPEL code from an XMI model annotated according to the UML profile for automated
business processes. However, ETTK does not include an end-to-end development environment: the actual
preparation of the annotated UML model has to be carried out in a standard UML tool such as Rational
Rose (which lacks specific support for the necessary UML stereotypes and annotations). Furthermore, the
ETTK has been discontinued by IBM Alphaworks in the meantime.

Finally, the IBM research regarding model-driven service composition has been further refined into a
full production-quality tool chain [78]. The main components in the tool chain are the WebSphere Business
Integration Modeler, which is used by business analysts to capture and simulate business processes, the
WebSphere Business Integration Server, which stores and distributes standards-based artifacts which are
generated from the business model, and the WebSphere Application Developer IE, which is used by the
application developer to refine the generated artifacts into runnable and deployable code. During the
transformation, business tasks are mapped to WSDL operations and control structures in the business
process are transformed into respective BPEL structures. However, for the transformation to succeed a
number or constraints need to be taken into account when modeling the business process (e.g., tasks are
not allowed to be connected ”in loops”, tasks are not allowed to have more than one output criterion).
Additionally, the mapping will usually only be semi-automatic – after the transformation the developer
needs to refine the generated artifacts in order to produce the actual deployable BPEL process. The reason
for this limitation is in the fact that not all information that is necessary on technical level is already
contained in the business process description. Recently, the WebSphere Business Integration Modeler has
been succeeded by the IBM Business Modeler, and WebSphere Integration Developer.

3.3 Automated Service Composition

A major family of approaches to Web service composition aim to fully or partially automate the process of
composition in order to deal with its high level of complexity. Manual implementation of a composition
schema is a time-consuming, error-prone and generally hard procedure and is most certainly not scalable.
Therefore, the need for automation in Web service composition should be apparent.

In [79], the authors propose a general framework for automatic Web service composition. Through
this framework, one can extract five distinct phases that constitute a complete automatic composition
approach. These phases are: description of atomic services, description of internal processes of services,
matching of requirements, composition evaluation and composition execution.

Atomic services description The first phase deals with the description and advertisement of atomic
services that will be used as building blocks for the composition. Service advertisement can be achieved
using UDDI or using the Service Profile class of OWL-S [43], which provides semantically annotated
descriptions for Web services.

Internal processes description Having dealt with the issue of creating specifications to describe how
services are represented externally, or in other words, what the service offers, a composition approach
then must focus on service specifications that describe the internal processes of the service, essentially
specifying how the service works. Formal and precise languages such as logic programming are required
in this case in order to effectively capture the constraints describing the internals of a service. This kind of
description is necessary in order to be able to decide how to compose different services and how their
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operations will interact. Translators may need to be designed in order to bridge the gap between service
specifications used in the previous phase and those defined in this phase.

Generation of composition process model The next phase is the heart of the composition process, as
it involves generating the composition process based on the requester’s requirements. The requester may
express his requirements in the form of a service specification, effectively describing the one service that,
if available, there would be no need to compose an equivalent from atomic services. In general, automated
composition approaches vary in the way requirements are expressed, from desired effects to complex
constraints and invariants. This phase should eventually produce a process model that describes which
services participate in the composition as well as the control and data flow among the participants. If more
than one composition schemas satisfy the requester’s requirements, then this phase will produce multiple
results.

Composition evaluation and execution The penultimate step in an automatic composition framework
and the final before executing the composite service is to evaluate the different composite services from
the previous phase in order to select one of them, according to a set of non-functional attributes such as
QoS aspects. These non-functional requirements may be explicitly stated by the requester or they may
be assumed by the framework. At the end of this phase, a single composite service is selected, which
is then executed in the final phase. Service execution involves executing the services that constitute the
composite service according to the process model produced in the third phase. The composite service can
be executed only once, or exposed as a new service that can be discovered and reused, possibly as part of
other composite services.

Automatic service composition approaches can be grouped into two distinct categories, workflow-
related approaches and AI planning techniques. The first group draws mainly from the fact that a composite
service is conceptually similar to a workflow, making it possible to exploit the accumulated knowledge in
the workflow community in order to facilitate Web service composition. Workflow-related techniques
may either provide a static composition scheme, meaning that only selection and binding of atomic Web
services is performed automatically or a dynamic one, where the process model creation is also automatic.

On the other hand, AI planning techniques involve generating a plan containing the series of actions
required to reach the goal state set by the service requester, beginning from an initial state. All approaches
in this family rely on one of the many planning techniques that the AI community has proposed and
incorporates it in the process model creation phase of the composition framework.

3.3.1 Workflow Techniques

Composition frameworks based on workflow techniques were one of the initial solutions proposed for
automatic Web service composition. In [80], the authors present EFlow, a framework for specifying and
managing service compositions. In EFlow, a service composition is represented by a graph containing
three different kinds of nodes. Service nodes represent that a service is invoked, either an atomic or a
composite one. Decision nodes are used to describe the execution flow, while event nodes represent the
exchange of events between services. The graph is constructed manually, thus EFlow is considered a
semi-automatic composition platform. However, the binding of concrete services to the abstract service
nodes is done automatically and can be modified dynamically. Service nodes contain code that enables a
search to be performed each time the flow leads to a particular node. As a result, the composition schema
adapts dynamically to any unexpected changes in the availability of services.

A work contemporary to EFlow, introduces a Polymorphic Process Model (PPM) [81] for processes
that span across multiple enterprises. Like EFlow, there are abstract processes that are binded to actual
service implementations at runtime. Unlike EFlow, PPM doesn’t use graphs to represent composite
services, but rather employs state machines, specifying all possible states of a service and the transitions
from state to state, which may be due to execution of service operations, service invocation or they may
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be refer to internal transitions of a single service. State machines will be revisited in the next subsection,
as they are also used in AI planning composition techniques.

In [82], the authors define Transactional WorkFlow Ontology (TWFO), an ontology used to describe
workflows. Based on TWFO, they build an automatic composition framework, which aims to create a
composite workflow based on component workflows described using TWFO. In this framework, a registry
containing OWL-S service descriptions is used to find services corresponding to the tasks in the composite
workflow. Then, the workflows for each service are read from a TWFO registry. Afterwards, ordering
constraints are applied and the control and data flow is constructed, in order to create and execute the
composite workflow.

In contrast to the previous work, where concrete workflows associated to services are combined to
a master workflow, [83] and [84] deal with abstract workflows. [83] argues that business process flow
specifications should be abstractly defined and only bound to concrete services at runtime. The authors
present a BPEL engine that is able to take an abstract workflow specification and dynamically bind Web
services in the flow taking into consideration any relations and dependencies between services as well as
domain constraints. This work uses planning in order to generate concrete process flows from the abstract
ones and, in that sense, is also related to the techniques that will be presented in the next section. [84]
advances one step further by allowing for the automatic generation of an abstract workflow based on a
high-level goal. An integrated Reasoning Service aims to create a combination of available services that
provide the required functionality to satisfy the goal, based on inputs, outputs, preconditions and effects.
Then, as in all previously mentioned frameworks, the abstract workflow tasks are matched with concrete
deployed services. If no service is found for a task, the Reasoning Service along with a Matchmaking
Service attempt to compose existing services in order to create a service that is match for that particular
task. The matching process results to an executable graph for the composition.

Finally, [85] deals with the security dimension of workflow composition by constructing a workflow
planning model that takes into consideration certain security policies. An algorithm for efficient workflow
planning under such circumstances is devised. This work is a bridge between traditional workflow
composition methods that were presented in this section and techniques based on AI planning that will be
presented in the next sections.

3.3.2 AI Planning Techniques

AI research has extensively covered a complex problem known as planning. A classic definition of
planning states that it is a kind of problem solving, where an agent uses its beliefs about available actions
and their consequences, in order to identify a solution over an abstract set of possible plans [86]. One
can deduce that if we make a mapping from actions to Web services, consequences to execution effects,
and beliefs to user requirements, then the planning problem is very similar to the problem of service
composition.

Based on the aforementioned definition of planning, an AI planning problem can be described as a
quintuple {S, s0, G,A,Γ} [86], where S is the set of all possible states of the world, s0 ⊂ S denotes the
initial state of the planner, G ⊂ S denotes the set of goal states the planning system attempts to reach, A
is the set of actions that can be performed in order to reach a goal state and Γ ⊆ S ×A× S is a transition
relation that describe the resulting state or states when a particular action is executed in a given world
state. If we consider A to be the available services, G to be the goal set by the requester, and a state model
related to S, s0 and Γ and applied to the available services, then we can use existing solutions to the AI
planning problem in order to solve the Web service composition problem. It should be noted that this
correlation is not followed by all approaches in this category.

Logic-based Planning

A large number of AI planning techniques involves expressing a domain theory in classical logic. A set of
rules is defined and plans are derived based on these rules. An early work that uses rule-based planning
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is SWORD [87]. SWORD is a toolkit that enables the composition of services that are described using
an Entity-Relationship (ER) model along with a Horn rule where the preconditions of the service imply
the postconditions. The developer specifies the desired inputs and outputs of the composite service and
SWORD attempts to generate a plan based on rules defined by data and control flow among the existing
services.

Medjahed et al. [88] presents another method using rule-based planning where a language called
Composite Service Specification Language (CSSL) is used to describe the desired composite service,
and composability rules are then used in order to select appropriate services for the composition. The
composability rules are syntactic and semantic, including qualitative rules. The authors also introduce
the notion of composition templates, which are stored templates of already created and tested composite
services that can be reused, as-is or as components in other composite services.

In [89], the authors extend composition rules to include new constraints known as invariants, in order
to capture the knowledge that a property must not change from a state to another. These constraints are
also adapted to the existing service description architecture of OWL-S. The resulting set of composition
rules is used in an backward planning approach enriching it with reasoning about service compositionality.
The backward planner creates the composition plan by decomposing the given set of goals and trying to
find services that satisfy a sub-goal while indulging the composition rules for that particular composition.
A successful plan is returned upon reaching a point where all goals are satisfied.

Apart from rule-based planning, another AI planning in the field of logic is planning with situation
calculus. The situation calculus represents the world and its change as a sequence of situations, where each
situation is a term that represents a state and is obtained by executing an action. McIlraith and Son [53]
adapt and extend Golog, a logic programming language built on top of the situation calculus in order
to allow for customizable user constraints, nondeterministic choices and other necessary modifications
to better satisfy the requirements of service composition. In [90], the authors present a set of methods
written in the logic programming language Prolog, for translating OWL-S service descriptions into Golog
programs.

Another approach for encoding operations into first-order predicate logics is the event calculus, where
events initiate periods during which certain properties hold. These periods end when another event that
terminates the associated property occurs. Similarly to the situation calculus approaches, Aydin et al. [91]
translate not only OWL-S service descriptions to the event calculus but also the generic composition
goal, which is expressed using the compound event construct. Afterwards, using goal decomposition the
generic composition is split into smaller tasks which are also captured by compound events.

A separate category of logic-based AI planning techniques encompasses all frameworks that use
theorem proving, expressing the goal as a theorem and trying to prove it follows from the axioms of the
application domain. [92] is one of the initial works in the field of Web services that uses theorem proving
in order to allow disparate web agents to cooperate, which essentially is a preliminary form of automatic
Web service composition.

In [93], the author uses Structural Synthesis of Program (SSP) to automatically compose Web services.
Using propositional variable as identifiers for the inputs and outputs of services, the composition problem
is transformed to the problem of proof search in propositional logic. This effort however, ignores semantic
information, including only structural properties in service specifications.

In his thesis [94], Rao presents a method for automatic Web service composition via Lineal Logic
theorem proving. While the external description of services is in OWL-S, Linear Logic is used internally
and is able to express both functional and non-functional attributes. The composite process model is
derived from the theorem proof and expressed using π-calculus [95, 96]. The theorem proving process
takes into consideration all aspects of a service description, the functional properties, the semantic
information as well as the non-functional attributes to generate the composition plan. Inference rules are
used to distinguish between functional and non-functional attributes. This effort is also outlined in [97].
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Extra-logical Planning

Despite the advantages of the aforementioned pure logic-based approaches, such as the ability to prove
certain properties of domain theories and precise semantics, the AI planning community developed and
uses several different formalisms to express planning domains. Planning Domain Definition Language
(PDDL) [98] is widely recognized as a standardized input for state-of-the-art planners and is based on
earlier languages such as STRIPS and ADL.

McDermott [99] presents a Web service composition method based on PDDL that takes into account
the state change produced by the execution of the service. To describe such type of knowledge, the
author introduces value of an action, a persistent knowledge type that is not treated as a truth literal.
The composition plan is generated by a backward graph-based planner, called regression-match planner.
In [100], WSDL descriptions along with service-annotation elements are transformed to PDDL documents.
To deal with the problem of partial observability of state that is often encountered in service compositions
where lack of information is common, the framework allows for replanning when additional knowledge
has been acquired.

Graph-based planners such as the one used by McDermott [99], are also used in other Web service
composition approaches. In [101], a mixed initiative approach is presented, as the authors want to point
out that it is unrealistic to pursue fully automated approaches. A planning component is included, which
is based on the Graphplan algorithm. GraphPlan [102] uses a novel planning graph to find sequences of
operations that lead to the goal state. The algorithm combines reachability analysis to determine whether
a state can be reached from another and disjunctive refinement, to allow for constraints to be applied in
order to resolve inconsistencies. In [103], the authors extend GraphPlan to take into account input and
output data types and also support loop generation based on the frequent observation of patterns. The
planner produces a BPEL flow that is combined with the results of a data mediator before being executed
by a BPEL engine.

Another approach in the field of graph-based planning is proposed by Lecue et al. [104]. The
framework includes an Automatic Composition Engine that can take as input both natural language and
formalized requests. The natural language requests are transformed into formalized ones using a built-in
Semantic Analyzer. The suggested framework uses the Causal Link Matrix (CLM) formalism [105]
in order to facilitate the computation of the final service composition as a semantic graph. The CLM
formalism is extended to support non-functional properties of Web services. The composition algorithm
advances backwards from the goals and the service request outputs and possible effects, to the service
request inputs and possible preconditions. Apart from exact semantic matches, the algorithm realistically
searches for partial matches, i.e. outputs being subsets or supersets of the inputs.

Hierarchical Task Network Planning

Hierarchical Task Network (HTN) planning [106, 107] provides hierarchical abstraction to deal with
the complexity of real-world planning domains, such as Web services. HTN planning includes not only
traditional operations, called primitive tasks that achieve certain effects when preconditions are met but
also a set of methods that allow for decomposition of tasks into subtasks. An approach of using HTN
planning in the realm of Web Services is based on the SHOP2 system [108] which is an ordered task
decomposition planner, meaning that it constructs the plan based on the execution order of the tasks. The
authors present a transformation method from OWL-S service descriptions to an HTN, derived from the
conceptual similarities of an OWL-S action description and an HTN task. The framework is effective
when explicit descriptions of the task to be accomplished are available, however it is unable to adapt to
information change that is common in dynamic environments.

In [109], an HTN planner is combined with Partial-Order Planning (POP). POP is used to generate an
initial plan which is then refined through HTN action decomposition. The final plan is then fed into a type
matching algorithm in order to match HTN actions to concrete Web service operations. The final service
grounded plan is executed by a workflow engine. Klusch et al. [110] present OWLS-Xplan, a framework
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that combines graph-based with HTN planning and uses PDDL descriptions. An OWLS2PDDL converter
performs the matching between OWL-S services and PDDL actions. PDDXML, an XML dialect of
PDDL is also developed, to facilitate SOAP communication of PDDL descriptions. As far as the planning
component is concerned, Xplan is a hybrid planner that combines a Relaxed Graphplan heuristic [111],
with an HTN component that aims to decompose any complex task that is encountered during the
graph generation. The framework also supports replanning in order to adapt to dynamically changing
environments. Paik and Maruyama [112] combine HTN planning with problem solving in the form of a
Constraint Satisfaction Problem (CSP) to remove limitations of HTN planners in representing user-defined
constraints and additional scheduling information.

Model Checking and FSM

Model checking is a formal verification technique, which allows determining whether a property holds in
a certain system formalized as a finite state model, i.e. using a Finite State Machine (FSM). Planning by
model checking is capable of dealing with complex issues such as nondeterminism, partial observability
and extended goals and has good semantic foundations.

Berardi et al. [113] represent services using both an external schema that specifies the external behavior
of a service and an internal schema that specifies how a service uses available information to execute an
action. These schemas are represented using FSMs. Based on the FSM representations of the services,
the authors attempt to prove whether a composition is possible or not, solving a satisfiability problem in
Deterministic Propositional Dynamic Logic (DPDL).

Pistore et al. [114] present a composition framework based on planning as model checking that covers
both cases of extended goals and cases of partial observability. For each of the services participating in a
composition, a planning domain and a protocol is defined and the framework aims to combine the partner
protocols so that the goals are achieved. In [115], abstract BPEL processes are transformed into state
transition systems and then transform these models into planning domains as a basis to realize service
composition based on model checking. ASTRO [116] is an implementation of the planning techniques
explored in [114] and [115].

In [117], the authors present an automated composition framework based on planning at the knowledge
level. BPEL processes are translated into formally defined knowledge level models. The planner presented
in [115] is then used in order to achieve a goal that is also represented in the knowledge level. Marconi et
al. [118] formally specify a data flow language as well as a graphical representation in the form of data
nets in order to capture composition requirements. This work is integrated in the automated composition
framework presented in [115] and [117] by representing data nets as state transition systems. Finally, [119]
applies the aforementioned work to a real world case study that involves the Amazon e-commerce services
and an e-payment bank service.

3.3.3 Comparison

The research approaches presented in this section are summarized and compared in Table 3.3.3. We take
into consideration the following criteria:

• Domain independence: The method is not exclusive to a specific domain (e.g. travelling, automotive)
but can be applied to any, allowing for the solution of a broad range of problems

• Partial observability: The method is able to reason on incomplete information

• Non-determinism: The method deals with actions that may lead to different states depending on the
values of some parameters (e.g. an if-else construct)

• Scalability: The method is able to solve real-world composition problems which often deal with
a large number of services. A low scalability means that this particular category of approaches
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becomes less efficient as the number of associated services and/or their complexity rises. On the
contrary, a high scalability ensures that there is support for large numbers of services and/or high
levels of complexity

• Applicability: The method uses well-known and widely used standards (mentioned in the table)

The table compares different categories of approaches and not different approaches due to the large
number of approaches presented in this section. It should be noted that if an approach supports one of the
criteria examined in the table, it doesn’t imply that all existing approaches in the category do so.

Automatic Domain Partial Non- Scalability Applicability
Composition Independence Observability Determinism

Method
Workflow Yes No Yes Average BPEL

Logic-based pl/ng Yes No No Varies OWL-S
Rule-based

Logic-based pl/ng Yes Yes Yes Average OWL-S
Situation calculus PDDL
Logic-based pl/ng Yes No No Low OWL-S

Event calculus
Logic-based pl/ng Yes No No Good OWL-S
Theorem proving

Extra-logical pl/ng No Yes No Good PDDL
PDDL

Extra-logical pl/ng No Yes Yes Average BPEL
Graph-based
HTN pl/ng Varies Yes Yes Good OWLS

PDDL
Model-checking and Yes Yes Yes Varies BPEL

FSM OWL-S

Table 3.2: Comparison of Categories of Research Approaches
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3.4 QoS-Aware Service Composition

During the last years, many services have become available, either publicly on the Web or provided by
business partners that implement a piece of functionality using specific programming models and exposing
it as services by using common standards and models such as WSDL, SOAP or the notation of RESTful
services (via XML or JSON).

Based on the fact that such services mostly use the Internet as a backbone, Quality of Service (QoS)
aspects such as performance, reliability, etc are becoming increasingly important to distinguish “good from
bad behaving services”. Following [120], QoS can be classified in deterministic and non-deterministic
QoS attributes. Deterministic QoS attributes, on the one hand, indicate that their value is known before a
service is invoked, including price or penalty rates. On the other hand, their non-deterministic counterpart
includes all attributes that are uncertain at service invocation time, for example service availability [121].
Dealing with non-deterministic attributes is more complex since it requires to perform calculations based
on data gathered during runtime observations.

Within the last couple of years, the research community identified a number of different ways to define
composition approaches taking QoS into account and trying to optimize the overall QoS of a composition
by aggregating the QoS of all services involved in a composition. Although different strategies for
calculating an optimal composition according to its QoS exist, the basic methodology that is shared among
most approaches is summarized below:

1. All approaches require to define an abstract composition in terms of its control flow and the activities
that perform the actual work. These activities are then implemented by a number of services that
are stored in a service repository (e.g., UDDI, ebXML).

2. For each activity in the composition, a QoS-aware service selection strategy has to find all services
that implement the functionality of a given activity dynamically at runtime. The goal is to find the
best service in terms of its QoS. This step is often referred to as local optimization.

3. In the presence of global QoS constraints, finding locally optima does not necessarily imply that the
QoS of the overall composition is optimal. Therefore, a global optimization step is necessary to
find a global optimum that fulfills global QoS constraints. This step is generally considered to be
NP-hard.

Various approaches for optimizing a composition exist (step 2 and 3) and will be discussed in detail
in Section 3.4.2. Besides these methodological commonalities, two very important preliminaries are
often not discussed in existing papers about composition: Firstly, the QoS model and the specification
mechanism that is used to associate QoS to certain services. Secondly, an approach to bootstrap and
monitor QoS to ensure that valid data about the service is available to achieve a composition. Both
approaches are briefly discussed in the next section.

3.4.1 Preliminaries for QoS-Aware Composition

As stated before, non-deterministic QoS properties are usually uncertain at service invocation time,
therefore, monitoring techniques have to be used to boostrap and define QoS attributes for atomic services
after their initial deployment. In addition to monitoring QoS attributes, a more general issue is the
specification and association of QoS attributes to concrete service implementations (besides whatever
concrete QoS models and metrics are used). It is not the intended scope of the paper to discuss QoS model,
specification and monitoring techniques as these mechanisms are out of scope of this deliverable. However,
for the sake of completeness, we briefly discuss its relevance and need for QoS-aware composition.
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QoS Model

Most QoS-aware composition approaches consider performance and dependability specific attributes as
well as pricing as their QoS. In Table 3.3, we have summarized a few common attributes and formulas
how they can be calculated. Please note that some approaches presented in this section have a slightly
different semantics for these attributes. For a more detailed description of their semantics, please see the
different papers.

QoS Attribute Formula Category

Response Time 1
#requests

∑
rti Performance

Availability 1 - downtime
uptime Dependability

Accuracy 1 - #failedrequests
#totalrequests Dependability

Price predefined Cost and Payment

Penalty predefined Cost and Payment

Table 3.3: QoS Attributes

The QoS attributes from Table 3.3 are briefly discussed below, for a detailed specification of these
attributes we refer the interested reader to [121, 122].

Response time: The response time of a service S is the time needed for sending a message M from
a given client to S until the response R for message M returns back to the client. The response time is
provider specific (due to the network latency), therefore, it is not possible to specify a globally valid value
for each client. The response time can be calculated based on a per-request basis. The formula in Table 3.3
calculates the response time for n values by summing up the individual response times and dividing it by
the number of requests. This helps to get a better approximation of the average response time.

Availability: The probability that a service S is running and producing correct results. The availability
is calculated by dividing the downtime by uptime (downtime ratio) and subtracting the from the maximum
availability (which is 1).

Accuracy: The accuracy of a service S is defined as the success rate produced by S . It can calculated
by evaluating all invocations starting from a given point in time and examining their results. It can be
calculated by subtracting the failure ratio (# failed requests divided by # total requests) from the maximal
accuracy (which is 1).

Price: Price is a deterministic attribute that defines the price on a per-invocation basis. Other measures
could include a fixed price for a number of request, e.g., 100 EUR for 10000 requests.

Penalty: The penalty is a deterministic measure that indicates the monetary value that has to be paid
by the service provider if a specific service level objective of an SLA is not fulfilled. The concrete
implementation of penalties can be combined with the pricing, e.g., each penalty reduces the price for the
invocation, etc.

QoS Specification and Monitoring

The preliminaries for achieving QoS-aware service composition can be divided into two bigger block,
namely Specification and Monitoring. At the end of this section we will also use these preliminaries to
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compare the discussed approaches.

Specification: Specification of QoS is an important aspect when dealing with QoS-aware composition.
Various QoS model have been proposed in different research papers, thus it is important that they
are clearly defined and metrics for specifying the QoS is important. Additionally, a mechanism that
describes how to associate QoS data with a given services is important as the QoS information is
needed at runtime to query the QoS of a service.

Monitoring: After specifying QoS, it is necessary to describe a mechanism how non-deterministic QoS
values can be monitored. We do not discuss monitoring approaches in detail as this is out of scope
for this survey. Please consider references [121, 122, 123, 124, 125] for more information on
monitoring approaches and languages for monitoring of atomic and composed services.

3.4.2 Composition and Optimization Approaches

This section describes different QoS-aware composition and optimization approaches that are grouped
into different categories. The categories are chosen based on their QoS-composition technique.

Combinatorial Approaches

Zeng et al. [126, 127] present a multi-dimensional QoS model that consists of price, duration, reputation,
success rate and availability. Each service is associated with a quality vector containing all QoS attributes
for each operation of a service. Their basic idea is to split a composition into multiple execution paths
based on their notation that a composition is specified using a state chart diagram. Each execution path is
considered to be a directed acyclic graph (DAG) given the assumption that the state chart has no cycles.
Additionally, the authors define an execution plan which is basically a set of pairs expressing that for
every task in the composition, a service exists that implements the operations required for that task. For
the local optimization, the system tries to find all candidate Web services that implement the given task.
Each service is assigned a quality vector and user defined scores for the different quality constraints.
These constraints are then used to compute a score for each candidate service. Based on Multiple Criteria
Decision Making (MCDM), a service is chosen which fulfills all requirements and has the highest score.
In order to find a global optimum, Zeng et al. initially came a with a naive global planning approach that
tries to find an execution plan for each execution paths in the statechart that describes the composition.
Since each planer only covers a subset of a statechart, these ”partial” plan need to be aggregated into an
overall execution path. The major disadvantage of this naive approach is the time complexity. If there
are n tasks and m candidate Web services for each task, the total number of mn, which is impractical.
Therefore, the authors propose an optimization approach based on Integer Programming (IP) that has
variables, an objective function and a set of constraints as an input (both latter mentioned inputs must
be linear). To achieve a QoS-aware optimization of the composition, global and local constraints can
be specified. In addition, an objective function has to be fulfilled. The optimization problem is then
solved using an IP solver. In addition to optimizing a composition, the authors also describe an approach
to re-plan and re-optimize a composition based on the fact that QoS can change over time. To do so, a
composition is split into regions according to the state of the tasks (’completed’, ’to be executed’, ’to be
started’, ’no longer accessible’) that allow a re-planning by adding constraints of what has already been
accomplished (where state is ’completed’) to optimize services that still have to be executed.

Brandic et al. [128] describe Amadeus, a QoS-aware Grid workflow system that supports a compre-
hensive set of QoS requirements. It provides in addition to performance and economical aspects also legal
and security aspects. The Amadeus architecture includes: (1) Visualization and Specification component;
(2) Planning, Negotiation and Execution component called QoS-aware Grid Workflow Engine (QWE);
and (3) a set of Grid Resources. The specification and visualization component comprises Teuta, a tool
for UML-based Grid workflow modeling and visualization. A user may specify the workflow with Teuta
by composing predefined workflow elements. For each workflow element different properties (such as
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execution time, price and location affinity) may be specified that indicate the user’s QoS requirements. A
set of QoS-aware service-oriented components is provided for workflow planning to support automatic
constraint-based service negotiation and workflow optimization. Amadeus provides adequate static and
dynamic planning strategies. For the static planning approach a mixed-integer linear programming is
applied, suitable for solution of NP-complete global optimization problems. It can be applied to the
planning of the whole workflow, or to the planning of complex activities. For improving the efficiency of
workflow planning a novel QoS-aware workflow reduction technique is introduced.

Yu et al. [129] discuss algorithms for Web services selection with end-to-end QoS constraints. Their
approach is based on different composition patterns similar to [130] and they group their algorithms
according to flows that have a sequential structure and ones that solve the composition problem for general
flows (i.e., flow that can have splits, loops etc). Based on this distinction, two models are devised to solve
the service selection problem: a combinatorial model that defines the problem as multidimensional multi-
choice knapsack problem (MMKP) and the graph model that defines the problem as a multi-constrained
optimal path (MCOP) problem. These models allows the specification of user-defined utility functions
that allow to optimize some application-specific parameters and the specification of multiple QoS criteria
taking global QoS into account. In the case of the combinatorial model, the authors use an MMKP
algorithm, that is known to be NP-complete. Therefore the authors apply different heuristics to solve it in
polynomial time. For the general flow structure the authors use an IP programming solution (also NP
complete), thus they again apply different heuristics to reduce the time complexity.

Jaeger et al. [130, 131] present a different approach of deriving QoS of a composite services by
following an aggregation approach that is based on the well-known workflow patterns by Wil van der
Aalst et al. [132]. The authors analyze all workflow patterns for their suitability and applicability to
composition and then derive a set of seven abstractions that are well-suited for compositions, called
composition patterns. Additionally, the authors define a simple QoS model consisting of execution time,
cost, encryption, throughput, and uptime probability and QoS aggregation formulas for each pattern.
The computation of the overall QoS of a composition is then realized by performing a stepwise graph
transformation, that identifies a pattern in a graph, calculates its QoS according to the aggregation functions
and the replaces the calculated pattern with a single node in the graph. The process is repeated until the
graph is completely processes and only one single node remains (which is itself a sequence according to
their composition pattern). For optimizing a composition, the authors analyze two class of algorithms,
namely the 0/1-Knapsack problem and the Resource Constrained Project Scheduling Problem (RCSP).
For both algorithms a number of heuristics are defined to solve the problems more efficiently.

Evolutionary Approaches

Canfora et al. [133] propose an approach that tries to solve the QoS-aware composition problem by
applying genetic algorithms. Firstly, the authors describe an approach to compute the QoS of an aggregated
service, similar to [134, 130, 135]. Secondly, the main issue of their approach, namely the encoding
of QoS-aware service composition problem as genome, is presented. The genome is represented by an
integer array with the number items equals to the number of distinct abstract services composing our
service. Each item, in turn, contains an index to the array of the concrete services matching that abstract
service. The crossover operator is a standard two-point crossover, while the mutation operator randomly
selects an abstract service (position in the genome) and randomly replaces the corresponding concrete
service with another one from the pool of available concrete service. The selection problem is modeled
as a dynamic fitness function with the goal to maximize some QoS attributes (e.g., response time) while
minimizing others (e.g., costs). Additionally, the fitness function must penalize individuals that do not
meet the QoS constraints. The authors evaluate their approach by comparing it to well-known integer
programming techniques. In another paper, the authors also describe an approach that allows re-planning
of existing service compositions based on slicing [136].
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Stochastic Approaches

Mukhija et al. [137] present the Dino framework that is targeted for the use in open dynamic environments.
Their main idea is that no global view on a service composition is available and thus each service specifies
which services it requires for its own execution. The service composition is formed at runtime by the
infrastructure. A key aspect is the fact that service requirements can change dynamically (triggered for
example by changing application context). Dino also supports QoS-aware service composition (similar
attributes as depicted in Table 3.3) composition by describing it formally using an ontology. QoS is
computed by using the actual and estimated QoS values that are monitored by the Dino broker. QoS
computation is modeled by using a continuous-time Markov chain that enables the association of a
probability value that expresses the confidence of the QoS specification.

Wiesemann et al. [138] present a QoS-aware composition model that is based on stochastic pro-
gramming techniques. Their model takes QoS-related uncertainty into account that minimized the
average-value-at-risk (AVaR) – a particular quantile-based risk measure – from the stochastic program-
ming domain. The trade-off between different QoS criteria is modeled by a combination of goal weighting
and satisficing two prominent techniques in multi-criteria optimization with the goal to minimize the
AVaR.

3.4.3 Comparison of Approaches

In this section, Table 3.4 summarizes existing approaches according to the following key aspects of
QoS-aware composition.

Specification: Expresses if the authors use a specific QoS model and how the QoS is specified an
associated with the services, e.g., using UDDI or WS-Policy.

Monitoring: Specifies whether QoS attributes are monitored or just statically defined or not possible to
determine from the paper.

Composition: As the composition aspect if the main focus of the paper it is further broken down to the
following attributes:

• Composition Constructs: Specifies the constructs that are supported for creating a composition.
We mainly distinguish between two aspect: simple processes (sequential ones with no loops
and/or splits) or more complex structures of processes (e.g., loops etc).

• Constraint Types: This aspect specifies constraints that are supported; we distinguish between
local and global constraints.

• Optimization Technique: It specifies the technique that is used for optimizing the QoS of a
composition, e.g., Integer Programming, etc.

• Complexity: It states the time complexity of the approach.

• Heuristics: Specifies if heuristics are used to speed up the time for solving the QoS-aware
optimization.

Re-optimization: Expresses whether re-optimization is performed.
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Chapter 4

Verification of Service Compositions

The main aim of a verification procedure is to check that the constructed system meets some properties.
These are sometimes generic, as termination, absence of deadlocks or starvation, temporal ordering of
actions (e.g., making sure X is always done before Y ), and sometimes these are related to an intended
behavior which has been stated in a previous design stage. Some key points in the formal verification field
are:

• The language with which the system is represented (for verification tools are seldom directly
applicable to the wide variety of different languages systems are written in / designed with).
Examples of system modeling language are Promela [139] (for the SPIN model checking system)
or the NuMSV language [140] (for the NuMSV model checker). In this respect, Petri Nets and
other formalisms which represent a system, are modeling languages.1

• The language with which the properties to be checked are expressed. Only properties that can be
expressed within that language (and in its associated semantics) will, naturally, be amenable to be
checked. The type of checkable properties, in turn, have an influence on the internal algorithms
used by the verification tool. In all cases, the verification procedure involves negating the property
to be checked, adding it to the system representation, and seeking for a contradiction: a reachable
state where the negated property is not met. Absence of such a state means that the original property
holds.

When a property violation is detected, tools can usually give a trace of the actions which lead to the
faulty state from the initial stated. This trace is expressed in terms of the model of the system, and
the distance between this model and the modeled system is critical to be able to precisely map fault
witnesses back to the original system.

• The actual procedure to verify that the system meets the properties. Model checking procedures are
among the most widely used procedures: the system to be checked is a Kripke Structure on which
temporal properties are tested for satisfiability. Automata-theoretic approaches [141] explicitly
expand the system states, while symbolic model checkers (mainly, BDD-based and, more recently,
SAT-based, represent the possible system states with a bounded propositional formula.

Constraint-based verification procedures use constraints (equations and disequations, in this case
usually over integers) both to represent system evolution and properties to be checked. Arithmetic
methods (e.g., variants of the Fourier-Motzkin variable elimination procedure) are used to check for
satisfiability, with very good results in many cases, with the added benefit that infinite-state system
can in some cases be dealt with directly.

1It should be noted, however, that some of them have property verifiers of their own. For example, there exists a wide variety
of techniques to verify Petri Nets which do not rely (at least directly) on Model Checking.
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Some verification algorithms make use of abstraction procedures to be able to cope with systems
with an infinite (or very large) number of states, and, orthogonally, to start with an abstract
representation of the system and perform a stepwise concretization process in order to discard false
negatives when a contradiction is detected.

Verification procedures based on proof-theoretic methods, which tried to symbolically prove / disprove
a (usually temporal) property in a system were tested in the earlier days of verification, but did not become
popular due to, e.g., scalability problems.

Due to the need to give correct answers2 regarding which properties hold in a system, formal
verification needs a formal base on which to build non-ambiguous reasoning. I.e., a usual prerequisite is
to have a clearly defined semantics for the operations of the system being checked and for the way they
are composed together. This is the first and necessary step for any verification attempt based on formal
methods. If this formal semantic base does not exist beforehand, then the translation of a system into a
format amenable to be formally verified provides in itself a semantics for, at least, a part of the language
the system was written in.

Verification can in principle be applied at any stage where the conditions above are met, for example:

Design time: a design can be verified against some properties, being them general or pertaining to the
application at hand.

Pre-deployment: after the system is built, it can be checked to make sure that relevant general properties
hold, or that some design properties have not been lost (due, e.g., to mistakes in the development
process). Sometimes, for efficiency / conciseness / finiteness only a part3 of the system variables
are taken into account.

Run-time: (also known as run-time verification) verification of properties takes place, additionally, while
the system is executing, either actually instrumenting the system itself or by looking at system
traces / logs. This approach can usually take into account all the variables in the system, but in turn
it cannot guarantee that the system will operate as expected with untested inputs. This is obviously
highly related to monitoring.

Verification approaches, unlike correctness by construction (CbC), work on an already built system or
software, while CbC tries to construct / design software / systems which are correct from the ground up by
defining the properties it has to finally met and making sure that these properties are not violated in any
step, including composition of subsystems. These approaches should be seen as complementary rather
than as competitors, as the properties they tackle are usually different and the moment in development in
which they are applied is also different – not to mention the technology and tools themselves.

The difference between validation and verification is easy to grasp from the following lemmas:

Verification: Did we built the system correctly?

Validation: Did we build the right system?

Validation typically involves the final user / client and is context dependent: the environment in which the
system is to be installed / executed has to be taken into account, as well as HCI issues. It is, therefore,
difficult to formalize fully, and it partly is a subjective process.

In the software and services field, verification proposals have used predominantly automaton-based
model checking with temporal logic properties. As for the level of the systems being modeled, the
majority of the pieces of work examined geared towards modeling service compositions expressed using
BPEL, sometimes extracting the model automatically from BPEL code. To the best of our knowledge,

2Or, at least, safe approximations thereof.
3Or an abstraction.
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even in the cases where it is claimed that choreographies are verified, a initial step to convert them into
orchestrations, which are then subject to verification, is taken. Of course this does not preclude that
verification procedures can tackle choreograpies as the subject of study, in order to check, e.g., timing
constraints or refinements of the choreography.

4.1 Verification Based on Model Checking

Temporal logic properties (expressed in a language like LTL or CTL, or with another language version
which is later translated into them, like XPath), are the ones which are usually attached to model checking
procedures. State reachability (e.g., state Sa will never be reached if state Sb has been already reached) is,
in some sense, the basic procedure behind the scenes. This includes testing for invariants, which must be
true in every state, such as for every state, if the activity named init is running, the part global variable
order sent must have a false value and Goals (properties on final states).

Also, some model checkers have specific constructs to express pre- and post-conditions on transitions.
Given a transition between states, a pre-condition (post-condition) is an assertion that must be true always
immediately before (after) the transition is taken. E.g., immediately before the activity named init
completes its execution, the part urgent of the global variable order sent must have a true value.

A number of approaches start with service compositions which are expressed using BPEL processes,
while others use, as system to be verified compositions which are written at some other level. We will
start with the former, and Section 4.1.2 will briefly deal with the former.

4.1.1 Approaches Starting with BPEL Processes

In this case the properties to be checked are either generic safety properties (such as termination, absence
of deadlocks, etc.) or properties which have been explicitly stated by the designers. In this case there is,
formally, no check that the BPEL composition preserves characteristics existing in some previous, maybe
higher-level, design, since such alternative system formulation does not exist.

In general, the path followed is to compile the BPEL design into some formalism which can be input
by some automatic verification tool together with a representation of the properties to check, and let
the tool do the checking; particular approaches add different specific characteristics, like for example,
checking not only behaviors, but also the compatibility of the interfaces of the different web services.

The need to check several types of characteristics (e.g., not only behavior) is acknowledged, for
example, by [142, 143], which states that composition of services has to be verified at three levels:
interface, behavior, and data. They, however, focus on the first two, and they pay attention to behavioral
(e.g., temporal) properties, specifically safety and liveness ones. In this approach orchestrations are
gathered and analyzed, and the activities are modeled using BPEL. At this point, the BPEL design is
translated into a Finite State Process (FSP) model which is compiled into a Labelled Transition System
(LTS) to be checked with the LTSA (LTS Analyzer) tool. The properties to be checked come with the
reachability analysis in the LTSA, but more properties can be added by the user by directly coding it in
FSP.

The complexity of BPEL has often been an issue. However, the work in [144] claims to take into
account all the BPEL constructs, except for those related with time. It is based on bounded model
checking, using the Bogor [145] extensible tool. As Bogor accepts formulæ written in LTL (through a
plugin, part of its extensible framework), all properties expressible in LTL can be subject to verification.
Additionally, expressions written in Ws-Col, an assertion language designed to state properties to monitor,
can be checked by Bogor. This piece of work provides examples with translations of some basic BPEL
constructions into BIR (the modelling language for Bogor) and offers a comparison of the number of
states needed to check properties on some benchmarks in relation with SPIN, which is very favorable to
Bogor.
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Compiling BPEL into a modelling language for a model checker is also the approach of [146] where
each web service is modeled using a finite state machine, and the different services are communicated
using activities which synchronize the states of the different partners. The correctness properties to be
verified are written using XPath predicates directly in the BPEL description of the business process.
The BPEL process is translated into the language of the NuSMV [140] model checker, while XPath
expressions are translated into CTL.

Timing aspects are one of the points to deal with when checking properties of systems in general, and
in particular of service compositions — especially when Quality of Service is to be taken into account.
This does not necessarily have to do with micro-scale time constraints, such as those frequently found in
embedded systems: e-Government procedures do have deadlines and requirements on when some actions
are taken, and the involved time span usually makes the computation time associated to the procedure
completely negligible. This is the view taken in [147], where an automaton-based formalism, called web
services timed transition systems (WSTTS), related to timed automata, is used to model the time behavior
of BPEL process composition. Quantified Discrete-time Duration Calculus [148] was adapted to perform
computations on WSTTS models. The processing time corresponding to BPEL itself is not taken into
account because of the reasons aforementioned. Among the properties under check, time constraints
can be tested against the modeled process, by translating time constraints into another WSTTS model
and generating the cross-product with the model corresponding to the BPEL processes. This transition
system is then translated into NuMSV which performs the actual model checking. Additionally the paper
provides an algorithm to analyze compositions of services and extract the maximum and minimum time
in which the composed service can finish.

Even if the model of composition under consideration is finite (because of the finite number of
processes and states in each process), the model of the system itself may be infinite due to the asynchronous
message passing adopted by BPEL. This means that an unbound number of messages may be in transit
from one process to another process. These messages are of course part of the system, and they have to be
somehow dealt with in order to faithfully represent the system behavior. This has been tackled by [149]
and [150] using two different approaches.

The former translates BPEL processes into an intermediate language (guarded automata [151]) and
messages between processes are represented as XPath expressions. This, additionally, makes it possible
to prove properties about the data, too, thus having a fine-grained set of properties. The guards of
the automata are also XPath expressions with local XML variables. The automaton is compiled into
Promela (the SPIN [139] model checker language), handling local XML variables (i.e., keeping more data
semantics), which is then fed to SPIN. Asynchronous communication, which needs unbound queues, can
in some cases be replaced with synchronous communication one while preserving the conversation set,
which makes it possible to have a bound number of states.

The approach in [150] tackles the problem of asynchronicity by substituting it with the possibility
of reordering messages with several degrees on the allowed reorderings: no reordering, reordering
between messages delivered to different partners, and reordering in messages delivered to the same
partner (i.e., out-of-order delivery). Different validity checks are defined for each of these scenarios.
This approach transforms BPEL designs into an state transition system (STS) extended with the notion
of trace compatibility. The STS model is then subject to parallel composition to account for different
processes and a NuMSV description is generated to be verified with respect to the validity defined for the
communication model chosen.

Of particular interest to be modeled are the parts of the language which deal with abnormal situations,
such as exceptions. As the existence of a fault must in practice not mean that the rest of the system has to
collapse, some effort as been put in making sure that verification also takes into account the possibility
that exceptions and exception handling can happen. The work in [152] claims precisely that, additionally
providing facilities to check pre- and post-conditions of transitions.

An interesting side-effect of the analysis of reachability that most tools perform is the possibility to
detect execution paths / activities which will not be needed in practice. This is one of the features of [153].
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This piece of work extracts behavioral properties from BPEL code by constructing an extended finite
automaton (EFA – essentially same as a guarded automaton in [149, 151]). Within it, temporal properties
are described and the automaton is compiled into Promela and checked by SPIN. Attention is payed to
dead path elimination, needed in order correctly deal with faulty situations where activities which can be
logically executed do not need to be executed under a (simple) operational semantics.

Many approaches use the well-known model checkers SPIN a NuSMV; however others choose, for
a variety of reasons, other model checkers, such as Bogor (seen before). The Concurrency Workbench
(CWB) is another model checker which was used in [154] to verify orchestrations. CWB is a powerful and
extensible tool, designed to prove properties on Milner’s CCS, which can be extended using the Process
Algebra Compiler (PAC). In this paper, BPEL is compiled into a BPEL Calculus, for which a module
was written using PAC. CWB can then perform model checking, preorder checking,4 and equivalence
checking (bisimilarity and observational equivalence, in this case) to, for example, detect states which are
operationally identical and which may lead to a simplification in the system.

Petri Nets are a very well studied formalism [155, 156] which has been applied to the modelling and
verification of service compositions. In particular, in [157], Petri Nets have been used to give a semantics
to BPEL, but also, based on that semantics, to model BPEL processes and verify properties on them, and
also to pave the way to making safe and semantics-preserving transformation of BPEL processes. The
authors show how BPEL constructs can be mapped into Petri Nets and, using the WofBPEL tool, the
authors can detect unreachable activities, conflicting message activities, or realize that some message will
not be received, in order to discard it as soon as this is detected.

Petri Nets are also used by [158] to express BPEL service models and to check their adherence to an
abstract correctness criterion called usability, which may have several flavors (it can be local, distributed,
etc.) and which is related to the termination of the processes while meeting some characteristics, such as
absence of deadlock.

4.1.2 Approaches Dealing with Other Design Formalisms

Verification is amenable to be used at several stages in the development process. In principle, high-level
designs with enough information can be verified to check that some properties are satisfied, and, at the
same time, the (desirable) properties / requirements expressed in these designs can be checked for in the
BPEL code and also at lower level.

In [159], the process model of OWL-S (the Web Ontology Language for Web Services) is used to
represent the behavior of the web service. Since OWL-S gives some description of the services being
composed, these services are no longer black boxes and the model checker has additional information
on certain boundedness properties of the aggregation. This model is then automatically translated into
a C-like language which is the input for the model checker BLAST, enhanced to check concurrency
in OWL-S. Improvements aiming at not making the interleavings too costly were adopted. When the
verification stage passes, positive test cases for the situations where the checked formulas hold can be
generated; the same is done for the cases where they do not hold, generating negative test cases. These
may be used to test and validate the final implementation.

Some approaches use ontology-based technology to express what a service composition should do. For
example, [160] use the ontology Daml-S Daml+Oil to capture service semantics which is then translated
to first order logic and to Petri Nets. In this point, composition of services can be performed, as well as
verification thereof, performance analysis, and a series of other relevant operations, many of them casted
in the terms of reachability and deadlock analysis.

An interesting approach which directly deals with the dynamic nature of web services is that of [161],
where it is acknowledged that the changing environment of where web services are executed may invalidate
the assumptions statically made at design / verification time. In this case, design-time verification is
made through model checking where external entities are abstracted using their interfaces and whatever

4Verifying that the model of a system and a specification thereof (in µ-calculus, in this case) have the same behavior.
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properties can be derived out of them. Assertions are given to represent functional and non-functional
properties. BPEL processes are mapped in the input language of the Bogor model checker. Some of the
assertions are assumed to be true by the model checker (e.g., they represent knowledge about the external
environment), and some are intended to be actually checked. Both types of assertions can be checked at
by specifying monitoring rules and parameters. These state which has to be monitored, the ranges within
which values are considered valid, and the frequency at which monitoring has to be made.

Verifying against specifications has already been tackled when the specification is done using common
tools closer to Software Engineering. The work in [162] starts with a specification of the composite model
done in UML using Message Sequence Charts (MCS). When the BPEL processes are ready, both the
MSC and the BPEL processes are compiled into separate FSPs. By verifying trace equivalence of these
two FSPs, using the LTSA tool [143], the compliance of the BPEL design with the MSC specification is
ensured.

Another way to specify what a system should do is clarify how it should react to some situations
written up by the system designer or system architect. One way to facilitate this is to design a specific
high-level language to express, e.g., business requirements which is later on refined into a more language
more closer to the business process. This is what the work in [163] does: the graphical modelling language
Tropos language, together with its formal counterpart, Formal Tropos, makes it possible to express the
requirements a business process has to meet, and to perform model checking (using, in this case, NuSMV)
directly on the business requirement level. Formal Tropos specifications can be refined into BPEL process
specifications, on which another model check procedure can be performed. it is worth to be noted that
this proposal, in which correctness of the system under development was ensured by checking that the
refinements still preserved the properties of the initial design, is not very far, in spirit, from what a
Correctness by Construction approach would do.

The key idea of this [164] is to verify properties of interactions between peers with the help of a
design pattern, the PeerControllerPattern. In this pattern, every participant provides a given interface
to interact with other partners and a behavioral description thereof (similar in spirit to a contract in
O.O. programming), from which BPEL specifications are generated for interoperability. The interface
specifications are checked using Java’s PathFinder, and the behavioral part is checked with SPIN, assuming
bounded-length message queues. The authors also pave the way to check behavior assuming unbound
queues by pointing out that the synchronizability analysis of [149] can be adapted for their case.

4.2 Other Verification Techniques

Computational logic has been used to verify service compositions in [166]. In their framework, SCIFF,
the composition of services is captured by describing the events which must happen, are expected to
happen, have happened, etc. in the form of logical formulæ: choreography integrity constraints, as rules
with the shape Head→ Body express implications from expectations to events that must happen. They
can be annotated with timing constraints. Additional knowledge on the choreography (such as number
of participants) is also added to the description of the choreography, but it does not change its expected
behavior. The specification is animated (e.g., run), and any errors (i.e., situations not abiding by the
integrity rules) found are flagged.

Event Calculus has also been used to check consistency of business protocols [167]. BPEL processes
are translated into event calculus, and the resulting program can be statically checked for potential flaws,
or run-time verification can be performed (by, e.g., feeding the event calculus model with a trace of a real
execution and checking that this trace really meets the properties expressed in the event calculus model).

Abstraction is pervasive in the analysis of software systems; for obvious reasons, linked to the spirit of
verification, it is not so widely used when checking for program correctness. This is however not a reason
not to use abstraction of programs or domains (and it is needed in some cases — for example, in the case
of verifying infinite-state systems or even systems with an extremely large number of states). In [168], the
authors deal with the very concrete case of verifying web services written in PHP5 through its translation
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Approach Modeled system Modeling lan-
guage / Checker

Types of prop-
erties tackled /
Language to ex-
press them

Specific charac-
teristics

Alberti et al. [166] Choreography
expressed in
SCIFF as CLP
rules

CLP rules Ad-Hoc Java tool Verification
linked to specifi-
cation animation,
using an event
source

Rouached et al. [167] BPEL Event Calcu-
lus / Discrete
Event Calculus
Reasoner

Chiefly de-
viations of
execution logs
w.r.t. expected
behavior

Focus on dy-
namic checking

Sharygina et al. [168] PHP5 SAT model
checker

Compositions
taken care of
with parallel
process operator

Table 4.4: Approaches Not Directly Using Model Checking

into a labeled Kripke structure which CSP semantics for synchronization. In their approach, they initially
abstract data at a coarse level. If a reported error trace is not realistic (because of the abstraction of the
data), this is used to refine the abstraction until no more spurious errors are found. They use SATabs to
model check the abstracted program and to refine it, using the unsatisfiable core of the SAT instance.
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Chapter 5

Conclusions

5.1 Summary

This deliverable has presented the state of the art in the composition and coordination of services.
In the first chapter, we have identified four service composition types: service orchestration, service

choreography, service wiring, and service coordination. For service orchestration, BPEL has been
adopted as a standard language and is supported by most big middleware vendors today. In the service
choreography space, the most prominent languages are BPEL4Chor, WS-CDL, and Let’s Dance. They
can be classified across two dimensions, implementation-independent vs. implementation-specific, and
interaction model vs. interconnected interface model. For service choreographies there is not yet a
standard language; BPEL4Chor is the most recent approach and because of the popularity of BPEL might
have good chances in this respect. Service wiring is a composition model which allows creating service
assemblies by wiring together requested and provided interfaces of services. The Service Component
Architecture is a technology which supports service wiring and which is supported by several Enterprise
Service Bus implementations. Finally, we have looked at service coordination, a model, in which services
agree on the outcome of a business protocol or transaction based on a coordination protocol. So far this
model is used mostly for implementing transaction protocols, however, also business protocols such as
auctions could be supported. Finally, we have looked at semantic WS composition languages. These
languages use ontologies and semantic Web services in order to reach a higher degree of automation
in service discovery and service composition. The most promising SWS composition languages are
BPEL4SWS and OWL-S. The first one is a mixture of BPEL, WSMO and SAWSDL while the second
one is a pure semantic language. BPEL4SWS seems more promising as it combines the best of the
composition and SWS discovery worlds but there is no actual implementation supporting it, yet, from
planning until dynamic binding and execution. In addition, by mixing different languages, there is always
the risk of non-uniformity and user confusion. On the other hand, OWL-S is a mature uniform language
that is supported by concrete implementations from planning until execution. However, it presents some
drawbacks that prevent it from becoming a de facto standard and restrict its use.

In the next chapter, we have described service composition approaches, which deal with creation
of service composition models. Model-Driven Service Composition copes with generating service
orchestration models from more abstract models. These abstract models are often created using platform-
independent modeling notations such as UML Activity Diagrams or BPMN and represent abstract business
process models modeled by business analysts. The approaches deal then with the transformation of abstract
models to executable composition models, such as executable BPEL processes. That transformation is in
general a process which involves both manual and automated tasks. Model-Driven service composition is
relatively popular and implemented in several commercial products. The goal of automated composition is
to select services and create a service composition based on an abstract goal without human intervention.
In this context, we have presented and compared approaches based on workflow techniques and AI
planning. Finally, we have dealt with QoS-based service composition which attempts to create a service
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composition that adheres to local and global QoS constraints.
The last chapter has presented verification techniques for service composition. Most techniques are

based on model checking. many of them focus on BPEL processes, checking properties such as safety
and liveness.

5.2 Research Challenges

In the following we identify research challenges in respect to service composition approaches.

Model-Driven Service Composition

During the last years, significant research results have been achieved in the area of model-driven service
composition: different high-level languages, and their mapping to executable representations (mostly
WS-BPEL) have been proposed, and production-level tools are available on the market. However, some
research challenges remain to be tackled in the future. First of all, integration of semantics or QoS into
business models is not a fully solved issue today, even though some initial work has already been carried
out. New high-level languages or models need to be defined, that can represent all metadata that will be
important on a technical workflow level already in the business model. Additionally, current tools lack a
full roundtrip modeling support: optimally, transformation should not only be possible top- down (i.e.,
from business models to executable processes), but also bottom-up (i.e., from executable processes to
business models). So far, transformations in this direction has been researched less extensively than the
top-down direction. Finally, the transformation between different types of models (i.e., from graph-based
models to flow-based models, and vice versa) remains an open issue for future work.

Automated Service Composition

Automated service composition is still an open research problem since none of the approaches presented
has been universally accepted as a standard method for automatically composing Web services. First and
foremost, steps should be taken towards a standard way of describing user goals and user requirements.
This description should be able to capture functional requirements as well as non-functional properties,
including QoS aspects. At the same time, it should be easy for a user to express his requirements
using such descriptions. Finally, these descriptions must be domain-independent, in order to cover all
cases where service composition may be needed. Moreover, the problem of automatically matching the
aforementioned requirements to compositions of existing Web services must be solved. If we settle on the
AI planning solution instead of the workflow techniques, it remains an open issue to decide which of the
available planners is most suited to the problem of Web service composition. It should also be examined
whether some kind of transformation of the user requirements is necessary in order to meet the needs of a
chosen planner or if a new customized planner should be constructed in order to meet the demands of
service composition. Finally, it remains to be decided whether the highest possible level of automation
should be our goal or if it is more effective to examine which level of automation yields the best results
while at the same time being able to address real-world service composition problems. Allowing for some
aspects of service composition to be conducted manually might result in a more realistic and satisfying
solution.

QoS-aware Service Composition

QoS-aware service composition is an important area within the scope of available service composition
methodologies as QoS allows to distinguish good from bad behaving services. This aspect is increasingly
important when dealing with service-centric business applications. Current research in this area mainly
focuses on algorithms and methods for optimization of QoS-aware compositions. Future research
challenges will have to focus on models and languages for describing QoS-aware compositions. The
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main goal is to ease the complex process of engineering service compositions by raising the level of
abstraction. The focus should be laid on semi- automated techniques that allow users to specify what a
composition should do - in a declarative manner - and what QoS guarantees are required and should be
delivered at runtime. Such declarative specifications will consist of a number of constraints (functional
and non-functional) that need to be matched and resolved against available services and their QoS
properties by leveraging strong support from service runtimes (e.g., querying capabilities, metadata
support). Facilitating such a declarative specification could be achieved using domain-specific languages
(DSLs) that capture these specifications and will be integrated with service runtimes to iteratively engineer
and refine a composition to the users requirements.

Verification of Service Compositions

BPEL is by far the most popular target for verification, yet it still poses challenges which have not
been completely addressed. Among those, some characteristics of the language such as compensation
and fault mechanisms, have been reported as being involved to model. Issues such as dynamic process
instantiation are also to be properly addressed as an integral part of the model of execution of service-
based applications. Indeed, in order to perform any formal work in a language, its formal semantics,
in a formalism which is suitable for the technique to be applied, is needed. Every verification proposal
tackling BPEL implicitly defines a semantics through the translation into a verification language,1 but
there is not a widely acknowledged formal semantics for BPEL as far as we know.

Being able to easily map a fault discovered by the verification process back to the initial specification
of the system is a very interesting feature. It depends on the particular formalism which is used to verify
the service composition, and not all proposals so far can do it to the same extent; it is indeed a direction
for future research and development. Related to this, being as accurate as possible in the detection of
faults is a needed characteristic. Some parts of the service composition are abstracted / overlooked when
performing verification — e.g., some characteristics of the language being not taken into account has
already been mentioned, and also concrete data values are sometimes not dealt with. Even when these are
abstracted in a safe way (i.e., no faulty composition is determined to be right), reducing the number of
false negatives is a very deasirable feature. Standard approaches include stepwise concretization (as in
[168]), but it is still to be applied to service compositions proper, which are unaware of how the aggregated
services are implemented. Introducing data aspects in the model to be verified may be a way to tackle this
problem.

Verification time and memory usage is a general issue, and it can bite sufficiently complex service
compositions. Among the possible workarounds, performing a pre-verification analysis which can gather
information which discards some execution paths is a possible line of work. Indeed, analysis information
should in general be useful to finally map the specification of the composition into an executable language,
and not only to perform a swifter verification.

Finally, a verified model can be applied to several purposes besides generating (hopefully) correct
executable code. It has to be noted that, although the model itself can be correct, it is possible that
the translation to the executable code is faulty (due to e.g. an error in the software which performs the
translation) or that the environment in which it is finally executed does not conform with the initial
assumptions. However, a verified model can be used to generate verified tests which can be applied to
the finally deployed service composition. If some of these tests fail, there is definitely a disagreement
between the model and the deployed composition. Otherwise, while it cannot be ensured that the software
is correct, there is additional evidence to trust it.

1Although some pieces of work [157] explicitly propose a semantics.
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[104] F. Lécué, E. Silva, and L. F. Pires, “A Framework for Dynamic Web Services Composition,” in
WEWST07: Proceedings of the 2nd ECOWS Workshop on Emerging Web Services Technology,
C. Pautasso and T. Gschwind, Eds., vol. 313. Halle, Germany: CEUR, 2007.
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