
Grant Agreement N° 215483

Copyright © 2008 by the S-CUBE consortium – All rights reserved.

The research leading to these results has received funding from the European Community's Seventh Framework Programme

FP7/2007-2013 under grant agreement n° 215483 (S-Cube).

File name: CD-JRA 2.2.2.doc

Title: Models and Mechanisms for Coordinated Service Compositions

Authors: USTUTT, UOC, UPM, VUA, UCBL, TUW

Editor: Martin Treiber (TUW)

Reviewers: Harald Psaier (TUW), Manuel Carro (UPM)

Identifier: CD-JRA-2.2.2

Type: Deliverable

Version: 1.2

Date: 16 March 2009

Status: Final

Class: External

Management Summary

This deliverable describes the research roadmap and initial research work in the context of models and

mechanisms for coordinated service compositions. It provides the foundations for the research in the

WP JRA-2.2 by establishing a preliminary framework for QoS-aware adaptable service compositions.

We present initial research results in some areas of this framework, in particular on models of service

compositions, top-down development, and monitoring and adaptation of service compositions. The

work will be continued and extended in the follow-up deliverables.

S-Cube

Software Services and Systems Network Deliverable #CD-JRA 2.2.2

 Final ExternalVersion 1.2, Dated 16 March 2009 ii

Members of the S-Cube consortium:

University of Duisburg-Essen (Coordinator) Germany

Tilburg University Netherlands

City University London U.K.

Consiglio Nazionale delle Ricerche Italy

Center for Scientific and Technological Research Italy

The French National Institute for Research in Computer Science and Control France

Lero - The Irish Software Engineering Research Centre Ireland

Politecnico di Milano Italy

MTA SZTAKI – Computer and Automation Research Institute Hungary

Vienna University of Technology Austria

Université Claude Bernard Lyon France

University of Crete Greece

Universidad Politécnica de Madrid Spain

University of Stuttgart Germany

University of Hamburg Germany

Vrije Universiteit Amsterdam Netherlands

Published S-Cube documents

All public S-Cube deliverables are available from the S-Cube Web Portal at the following URL:

http://www.s-cube-network.eu/results/deliverables/

S-Cube

Software Services and Systems Network Deliverable #CD-JRA 2.2.2

 Final ExternalVersion 1.2, Dated 16 March 2009 iii

The S-Cube Deliverable Series

Vision and Objectives of S-Cube

The Software Services and Systems Network (S-Cube) will establish a unified, multidisciplinary,

vibrant research community which will enable Europe to lead the software-services revolution,

helping shape the software-service based Internet which is the backbone of our future interactive

society.

By integrating diverse research communities, S-Cube intends to achieve world-wide scientific

excellence in a field that is critical for European competitiveness. S-Cube will accomplish its aims by

meeting the following objectives:

• Re-aligning, re-shaping and integrating research agendas of key European players from

diverse research areas and by synthesizing and integrating diversified knowledge, thereby

establishing a long-lasting foundation for steering research and for achieving innovation at the

highest level.

• Inaugurating a Europe-wide common program of education and training for researchers and

industry thereby creating a common culture that will have a profound impact on the future of

the field.

• Establishing a pro-active mobility plan to enable cross-fertilisation and thereby fostering the

integration of research communities and the establishment of a common software services

research culture.

• Establishing trust relationships with industry via European Technology Platforms (specifically

NESSI) to achieve a catalytic effect in shaping European research, strengthening industrial

competitiveness and addressing main societal challenges.

• Defining a broader research vision and perspective that will shape the software-service based

Internet of the future and will accelerate economic growth and improve the living conditions

of European citizens.

S-Cube will produce an integrated research community of international reputation and acclaim that

will help define the future shape of the field of software services which is of critical for European

competitiveness. S-Cube will provide service engineering methodologies which facilitate the

development, deployment and adjustment of sophisticated hybrid service-based systems that cannot be

addressed with today’s limited software engineering approaches. S-Cube will further introduce an

advanced training program for researchers and practitioners. Finally, S-Cube intends to bring strategic

added value to European industry by using industry best-practice models and by implementing

research results into pilot business cases and prototype systems.

S-Cube materials are available from URL: http://www.s-cube-network.eu/

Contents

1 Introduction 3

2 Research Roadmap Overview 4
2.1 Lifecycle of Service Compositions . 4
2.2 Summary of Research Objectives for QoS-aware Adaptable Service Compositions 5
2.3 Summary of Targeted Research Results . 6
2.4 Relationship with Other Workpackages . 7

2.4.1 WP IA-1.1 (Convergence knowledge model) 7
2.4.2 WP JRA-1.1 (Engineering Principles) 7
2.4.3 WP JRA-1.2 (Adaptation and Monitoring) 8
2.4.4 WP JRA-1.3 (End-to-End Quality Provision and SLA Conformance) . 8
2.4.5 WP JRA-2.1 (Business Process Management) 9
2.4.6 WP JRA-2.3 (Self-* Service Infrastructure and Service Discovery Support) 9

3 Service Composition Models 11
3.1 Service Models . 11

3.1.1 Biologically Inspired Service Models 11
3.1.2 Semantic Service Models . 13

3.2 Formal Models for QoS-Aware Service Compositions 16
3.3 Transactional Web Services . 17

3.3.1 Transactional behavior in composite Web services 17
3.3.2 Transactional WS Patterns . 20
3.3.3 Validation . 20

3.4 Service Coordination Models . 21
3.4.1 Representation Formalisms . 21
3.4.2 Towards Truly Distributed Service Networks 22
3.4.3 Initial Steps Towards Multi-Party BP Evolution: Replaceability and

Compatibility . 23

4 Service Composition Approaches and Languages 25
4.1 Business Process Development using WS-CDL and WS-BPEL 25

5 Monitoring, Analysis, and Adaptation of Service Compositions 30
5.1 Monitoring and Analysis . 30

5.1.1 A Framework for Monitoring and Analysis of QoS-aware Service Com-
positions . 31

5.1.2 Monitoring Performance of Service Compositions 31
5.1.3 Analysis of Factors Influencing KPIs 33

5.2 Adaptation . 34
5.2.1 Adaptation dimensions . 34
5.2.2 Classification of Adaptation Drivers 35
5.2.3 Adaptation Mechanisms . 36

1

CONTENTS

6 Conclusions 38

S-Cube – CD-JRA-2.2.2 (Version: March 16, 2009) 2

Chapter 1

Introduction

The goal of work package JRA-2.2 is to establish the foundation of QoS-aware adaptable
service compositions. QoS-aware adaptable service compositions adapt as reaction to changes
in the QoS characteristics of SBAs. The QoS characteristics of an SBA are specified on all
three SBA functional layers. This means that the service compositions and their adaptation
are influenced by all these characteristics in a combination. The work in this WP is hence
relying on input and QoS requierements from the BPM and Service Infrastructure layers
and addresses them them throughout the service composition lifecycle, including modeling
and verification, execution, monitoring and adaptation. This deliverable presents the initial
roadmap towards organizing the research in this WP and first research results for models
and mechanisms of QoS-aware adaptable service compositions. The research work on the
foundations of QoS-aware adaptable service compositions will be refined and extended in the
follow-up deliverables.

The document organizes the discussion of the planned research work according to the life
cycle of service compositions, which is a part of the life cycle of SBAs in general. We first
deal with modeling of QoS-aware service compositions establishing formal models for service
compositions. We then show how QoS-aware adaptable compositions can be developed and
executed based on corresponding languages. Finally, we deal with monitoring and adaptation
of service compositions.

As we take into account the requirements from the business layer and requirements and
influences of the service infrastructure layer, we are closely collaborating with the other two
workpackages in JRA-2. An additional goal is to identify the potential contribution of this
work package to the engineering and design principles work package JRA-1, both by giving
input on engineering and design principles considering usage of our models and mechanims
for service compositions and providing those models and mechanisms.

The deliverable is structured as follows. In Section 2 we present the research roadmap of
the whole work package JRA-2.2 giving a short overview of the way we structure the work
according to service composition life cycle and the challenges we want to tackle. We also
discuss relations of our work to other work packages. In the following sections we then present
these challenges in more detail and present initial research results. Section 3 presents our first
results and findings on service composition models. Section 4 deals with service composition
languages and development approaches for service compositions. In Section 5 we present our
current work on monitoring, analysis, and adaptation of service compositions.

3

Chapter 2

Research Roadmap Overview

The subject of research in this work package are QoS-aware adaptable service compositions.
In this section, we will present how we organize the research work in this WP and identify
approaches and mechanisms needed to address the open issues in the field of service com-
positions and in the context of S-Cube. We will use this organization as a guideline for the
research work and refine it in the follow-up deliverables of this WP. We begin by describing
the established service composition lifecycle which will be used as a basis for the following
discussion on research challenges.

2.1 Lifecycle of Service Compositions

Figure 2.1: Lifecycle of Service Compositions

In this document we use a simplified service composition life cycle containing four major
phases. This life cycle is not a complete one and is used for organizing the discussion; it by
no means reflects all possible life cycle definitions used in the SoC and BPM communities.
The life cycle will be adjusted to the research results produced by the integration activities
in S-Cube and the work in JRA-1, which deal with engineering principles for SBAs in an
integrated manner.

Service compositions follow four major phases during the course of their existence:

1. Modelling phase - a.k.a. build or design time (definition from the SOC and BPM
communities): during this phase the service compositions are created either automatically,
generated from another representation of the composition or developed from scratch

4

2.2. SUMMARY OF RESEARCH OBJECTIVES FOR QOS-AWARE ADAPTABLE
SERVICE COMPOSITIONS

by a service composition developer. The output is the executable representation of the
service composition.

2. Deployment phase - the executable service composition is made available for execution on
an execution environment. This phase includes configuration of the service composition.
The concrete steps to be performed and the information needed to configure the
composition depend on the service composition language used and on the execution
environment on which it is to be deployed.

3. Run time and monitoring: service compositions are executed during this phase. While
executed they are also monitored to allow tracking of the status of the composition, the
data and resources it utilizes, and process metrics. The monitoring data may also be
used for run-time analysis purposes, where analysis may be done during the execution of
the compositions or after that, using the so-called audit trail or execution history. The
analysis during the execution of service compositions may by used to support decisions
to adapt the composition or parts of it.

4. Analysis phase - during this phase the execution history of the service composition is used
for analysis. The analysis may involve process mining, fault pattern detection, resource
consumption and throughput analysis. All the results of the analysis phase can be used
for the purpose of improving/optimizing the quality of the service composition with
respect to various criteria. The result of the phase are recommendations for adaptation
of service compositions in general or per case (instance, e.g. a concrete customer order,
a specific item processing, etc.). The adaptation recommendations may be produced
and may be enforced during both the modelling and run time phases.

2.2 Summary of Research Objectives for QoS-aware Adapt-
able Service Compositions

We will explain the position of the service composition research in the scope of JRA-2 based
on the layering shown in Figure 2.2. The interactions with the other two work packages in
JRA-2 are also presented.

When using a top-down approach for developing service compositions, the modeling phase
comprises the creation of a service composition based on the input from the upper level in
the architecture of SBAs (the BPM layer). The input is provided in the form of business
process models in a notation and format specified in the work on the BPM work package. The
business process models comprise high-level orchestrations and choreographies, which must
be transformed into executable service compositions. Such preliminary approaches already
exist, based on existing service composition models, however the QoS-awareness (QoS not
constrained only to technical QoS but including also quality characteristics on process (process
performance metrics) and business layer (key performance indicators)) of such compositions
is not supported.

In the existing models for services and service compositions, QoS awareness in combination
with the creation of service compositions and their adaptation are not completely addressed.
The available languages for executable compositions also abstract away or consider in isolation
the QoS characteristics of the compositions as a whole and of the individual services. Validation
and verification of the service compositions exploiting the QoS characteristics are hence
hampered. The derivation of QoS characteristics for service compositions and the composed
services is not yet enabled, i.e. the following two kinds of transformation on conceptual level
are not yet addressed: (a) the transformation from the BPM level requirements (KPIs) to
the service composition requirements and (b) derivation of QoS characteristics of individual
service from the overall QoS description of the composition.

S-Cube – CD-JRA-2.2.2 (Version: March 16, 2009) 5

2.3. SUMMARY OF TARGETED RESEARCH RESULTS

The service compositions generated or created manually based on the input from the
BPM level will be executed on a service composition execution environment. Due to the
identified partner expertise, the methodology and approaches will be shown to work for the
process based approach for service compositions and hence will be executable on a process
execution environment or a process engine. Nevertheless, we will identify the necessary
functions an execution environment must possess in order to execute QoS-aware adaptable
service compositions, regardless of the implementation technology. One major feature of
such an environment we intend to focus on is the support for monitoring and adaptation
mechanisms.

Monitoring of service compositions in turn will enable the analysis of service compositions
and is a necessary prerequisite for identifying the need for adaptation of service compositions.
For the purpose of monitoring, we will deal with monitoring across layers taking into account
key performance indicators (KPIs) on business level, process performance metrics (PPMs)
on service composition level, technical QoS metrics on service infrastructure level, and their
relations. On top of the monitoring framework, we will devise new analysis techniques which
enable dependency analysis between the metrics on the different layers. The monitoring
and analysis framework will be integrated with adaptation mechanisms. Mechanisms for
adaptation of service compositions will be identified and classified and will be demonstrated
for the process-based implementation approach. The triggers for the adaptation of service
composition will also be identified and classified and the respective subsequent adaptation
reactions on behalf of service compositions recommended. Thereby, we will in particular
deal with process fragmentation and pro-active adaptation based on monitoring and analysis
results.

2.3 Summary of Targeted Research Results

Currently we have identified the following major groups of research challenges, which will be
refined in the course of the project and in cooperation with the other WPs in S-Cube.

Formal Models and Languages for QoS-aware Service Compositions:

• Models of services and service compositions, including formal representation, incorpo-
rating QoS and behavioural features

• Languages for service compositions that reflect the above mentioned models

• Mechanisms for deriving QoS characteristics of compositions from QoS descriptions of
the individual services and vice versa

• Mechanisms for decomposition of business performance characteristics (KPIs) to QoS
characteristics of service compositions and services and vice versa

Monitoring and Analysis of QoS-aware Service Compositions:

• Mechanisms for monitoring performance characteristics of service compositions based
on both process performance metrics on process level, and QoS metrics on service
infrastructure level

• Mechanisms for cross-layer performance analysis and prediction, i.e., dependency analysis
between KPIs, Process Performance Metrics, and QoS Metrics

• Integration of monitoring, analysis, and adaptation mechanisms

Adaptation of QoS-aware Service Compositions:

• Adaptation mechanisms for service compositions to react to different triggers, including
those from the BPM and Service Infrastructure levels

S-Cube – CD-JRA-2.2.2 (Version: March 16, 2009) 6

2.4. RELATIONSHIP WITH OTHER WORKPACKAGES

• Mechanisms for pro-active adaptation based on monitoring and analysis results (in
particular based on prediction)

• Mechanisms for fragmentation of service compositions to improve reusability and flexi-
bility of SBAs

2.4 Relationship with Other Workpackages

In order to better understand how this deliverable is interrelated with other workpackages,
we give here an account of these dependencies as an inverse index: for each workpackage for
which we have identified a clear dependency / feedback, we state where in this deliverable that
dependency appears. We hope that this to result in a better cohesion between workpackages
and to contribute to an enhancement of collaboration and cross-fertilization possibilities.

2.4.1 WP IA-1.1 (Convergence knowledge model)

The present workpackage, as the rest of the S-Cube workpackage, contributes to the knowledge
model with terms, definitions, and interrelationships between them.

2.4.2 WP JRA-1.1 (Engineering Principles)

Service engineering differs from traditional software engineering mainly due to their focus
and aims [1, 2]. In particular, the focus of service engineering is shifted from engineering
applications to composing pools of services; the control of software (services) is passed from
their users to other owners (i.e. users of services do not have the control of them), and the
aims are redirected from quality of software (e.g. performance, security, maintainability) to
the ability to adapt to ever-changing requirements (e.g. flexibility, dynamicity).

These differences are reflected by a number of aspects that are crucial to communicate
the service development process and cross-cut all the layers in service-based applications,
including service compositions.

• Service aspect 1: Cross-organizational collaboration Cross-organizational collaboration is
especially critical since multiple roles collaboratively develop service-based applications.
The roles coexist in a service-based application rather than having an active-passive
relationship (e.g. outsourcer and supplier). Collaboration becomes white-box in that it
enters the details of a service development process that is now scattered across multiple
partner enterprises. This makes their relationship tighter but also demanding clearer
governance and agreements.

• Service aspect 2: Increased importance of identifying stakeholders Since cross-organizational
collaboration becomes more critical, the importance of clearly identifying stakehold-
ers increases accordingly. If stakeholders are identified at a very detailed level, the
interaction represented in a development process model also becomes more elaborated.
However, if stakeholders are identified at a too high level of granularity, the represented
interaction remains not fully specified. This leads to unclear responsibilities among
collaborating enterprises and thus decrease in trust and possibly in success. Because
the level of details matters, the identification of stakeholders directly decides the level
of detail expressed in a development process model.

• Service aspect 3: Increased effort at run-/change time

The main goal of SBAs is not only to deliver high quality but also agile and robust
services which are able to meet the ever-changing business requirements. Consequently,
much more development effort is shifting from design time to run-/change time. For

S-Cube – CD-JRA-2.2.2 (Version: March 16, 2009) 7

2.4. RELATIONSHIP WITH OTHER WORKPACKAGES

instance, components identification is often performed at design time in TSE; the service
engineering equivalent activity is service discovery, which is encouraged to be performed
at runtime and it is regarded as one of the major challenges in the service engineering
field.

These aspects are not only relevant to service composition but are also peculiar to
service engineering in general. By analyzing these aspects and visualizing them in a service
development process model, different service engineering approaches can be better interpreted
and investigated. From the perspective of the development process, these aspects are part
of the engineering knowledge that should be *explicitly *captured. This corresponds with
knowledge models, which define service oriented computing processes and modeling, presented
in S-Cube deliverable CD-JRA-1.1.2.

2.4.3 WP JRA-1.2 (Adaptation and Monitoring)

• Service composition inspired on biological models (Section 3.1.1) are also related with
adaptation, since fitness can be used to measure how well the evolution of a composition
interacts with the rest of the environment. The result of fitness functions can therefore
be taken into account by adaptation layers in order to decide about this adaptation.

• Timed automaton (used in Section 3.4.1 to represent orchestrations and choreographies)
include time constraints which restrict when state changes can happen. It is possible
to used these constraints to derive sound upper and lower bounds for clocks1 in each
state of the system. Checking these bounds can be taken care of by actual code which is
generated in an at least systematic, if not semi-automatic way. This will help monitoring
mechanisms to trigger the appropriate adaptation / readjusting / alarm procedures in
case deviations larger than admissible are detected.

• The proposed approaches to monitor service compositions (Section 5.1) naturally need
to establish a link with the general, project-wide monitoring techniques, and use the
mechanisms therein proposed in order to assess the quality of the running compositions.

2.4.4 WP JRA-1.3 (End-to-End Quality Provision and SLA Conformance)

The Quality Reference Model (S-Cube deliverable CD-JRA-1.3.2) serves as classification
of QoS attributes for whole S-Cube framework and, in particular, for QoS-aware service
composition.

• The fitness notion of biologically-inspired models (Section 3.1.1) is a parameter which
can have a complex definition adapting to the different points of view of stakeholders.
In this respect, some definitions of fitness can be very similar to, or be greatly influenced
by QoS characteristics.

• The semantics of time constraints in Section 3.4.1 very similar to that of clocks in a
timed automaton does —and, in fact, the former can be mapped onto the latter. These
time constraints could be used to reflect some conditions (i.e., maximum or minimum
bounds) on one of QoS attributes presented in CD-JRA-1.3.2, time behavior.

• As mentioned previously (Section 2.4.3), lower and upper bounds on clocks can be used
to instrument the composition so that alarms are triggered. Alternatively, by measuring
how well a systems behaves (time-wise) with respect to its initial design, a degree of
conformance to this design can be worked out. This conformance can also be seen as a
measure of efficiency compliance (also in CD-JRA-1.3.2).

1Which customarily represent time.

S-Cube – CD-JRA-2.2.2 (Version: March 16, 2009) 8

2.4. RELATIONSHIP WITH OTHER WORKPACKAGES

• The work on replaceability (Section 3.4.3) and interoperability (Section 3.4.3) also gives
an initial technique to automatically decide on replaceability, thereby linking directly
with the quality attribute presented in CD-JRA-1.3.2. While in the present state of
work only coarse qualitative (yes, no, perhaps) answers to replaceability are being given,
expanding our approach to also generate measures of replaceability is in progress.

• The service composition approach based on refinements from WS-CDL and WSDL to
WS-BPEL and WS-Policy (Section 4.1) explicitly takes into account QoS characteristics,
and therefore contributes to JRA-1.3 in maintaining end-to-end quality.

2.4.5 WP JRA-2.1 (Business Process Management)

• Some fitness measures of service compositions (Section 3.1.1) can in principle be defined
to approximate KPIs, and thus they can be used to measure the overall ability of some
service composition to fulfill business goals.

• The formalism in Section 3.4.1 represents quite closely a business process, and can be
intuitively understood as such by practitioners in the field. However it can also be used
to check for compliance and, to some extent, to guide realizations of service compositions
aiming at implementing such a business process.

• One challenge in the BPM area is to adequately represent transactions, which can be
trans-organizational and very complex. The proposals on transactions and transaction
patterns (Section 3.3.2) can be used, to some extent, to answer to this need and provide
a means to map these high-level goals onto to composition layer.

• The analysis and monitoring proposals put forward in Section 5.1 explicitly aim at taking
into account the different metrics (KPIs, PPMs) of the BPM layers and monitoring,
therefore implementing cross-layer monitoring.

2.4.6 WP JRA-2.3 (Self-* Service Infrastructure and Service Discovery
Support)

• Part of the actual data monitoring needed by Section 5.1 in order to ensure that some
service composition is faithful to its design has to be gathered from runtime characteristics
and the profile of the actual execution which are available only the infrastructure level.
This establishes a strong relationship between workpackages JRA-2.2 and JRA-2.3.

S-Cube – CD-JRA-2.2.2 (Version: March 16, 2009) 9

2.4. RELATIONSHIP WITH OTHER WORKPACKAGES

M
apping

R
efinem

ent of
PPM

s

Process!M
odels

PPM
s,!SLA

s

G
lobal!Business!

V
iew

A
nnotate

Service!N
etw

orks

Choreographies!

and!orchestrations

BPM
N
!+!extensions

Key!Perform
ance!

Indicators
A
nnotate

PPM
s,!SLA

s

Orchestrations/!local!view!at!partner
(choreography!implementations)

Process m
odel

Service Compositions

B
PEL (Executable, abstract),

B
PEL4C

hor (choreographies), B
PEL + extensions

B
inding/Invocation

of Services

M
apping from

PPM

s to Q
oS,

events

Q
oS

Service

Events
R

egistry
ESB

 + G
rid (com

bined)
D

iscovery
Services and Service

Infrastructure

A
daptation

R
equests

BPM
Process!M

odels

M
apping from

K

PIs to PPM
s

M
onitoring
Events

PPM

C
alculation

K
PI

C
alculation

M
apping

A
daptation

R
equests

M
onitoring
Events

A
daptation

R
equests

M
onitoring
Events

PPM

C
alculation

WP"JRA"2.2:!SCC

-M
o

d
e
ls +

 P
P

M
/

Q
o

S
 m

o
d

e
ls

- L
a
n

g
u

a
g

e
s (fo

r d
e
fin

ito
n

 a
n

d
 e

x
e
cu

ta
b

le
)

- M
e
ch

a
n

ism
s fo

r a
d

a
p

ta
tio

n

- In
clu

d
e
 fra

g
m

e
n

ta
tio

n

- M
e
ch

a
n

ism
s fo

r m
o

n
ito

rin
g

-A
rch

ite
ctu

re

C
h

a
n

g
e
 o

n
 th

e
 se

rv
ice

 le
v
e
l:

M
A

Y
 C

O
N

T
A

IT
N

 C
H

A
N

G
E
 o

f Q
o
S

 o
f se

rv
ice

s

-ch
a
n

g
e
 im

p
le

m
e
n

ta
tio

n
, u

n
ch

a
n

g
e
d

in

te
rfa

ce

- change interface, change im
plem

entation –
influence on com

position – how
? M

echanism
s to

define
- ch

a
n

g
e
 im

p
le

m
e
n

ta
tio

n
, fix

e
d

 in
te

rfa
ce

,
b

u
t ch

a
n

g
e
d

 fu
n

ctio
n

a
l p

ro
p

e
rtie

s –
 m

a
y

n
e
e
d

 to
 ch

a
n

g
e
 th

e
 co

m
p

o
sitio

n
 (U

H
)

-M
a
y
 co

n
sid

e
r a

d
a
p

ta
tio

n
 o

f in
fra

stru
ctu

re
 o

r
a
d

a
p

ta
tio

n
 o

f se
rv

ice
s b

e
ca

u
se

 o
f ch

a
n

g
e
 in

in

fra
stru

ctu
re

Q
oS

Service

adapt
A

lternative 1

A
lternative 2

Q
oS

Service!

Im
pl.!1

adapt

Q
oS

Service!

Im
pl.!2

W
P

-2
.3

 C
o

n
ta

in
s:

- co
n

ce
p

ts
- M

echanism
s for service

adaptation and m
onitoring -

- A
rchitecture

- Prototype

C
h

a
n

g
e
 o

n
 th

e
 p

ro
ce

ss
le

v
e
l:

- to
 cla

ssify
.

C
o

n
tro

l flo
w

, se
rv

ice
s, e

tc
d

im
e
n

sio
s

WP"JRA"2.3:!SI
WP"JRA"2.2:!BPM

E
V

E
N

TS

E
V

E
N

TS

E
V

E
N

TS

-A
rte

fa
cts:

-
S

V
N

 M
o

d
e
ls

- B
u

sin
e
ss v

ie
w

s o
n

 S
V

N
s, B

u
sin

e
sss

T
ra

n
sa

ctio
n

s, ch
o

re
o
g

ra
p

h
y
 a

n
d

 S
L
A

s

-M
e
ch

a
n

ism
s fo

r

- m
o

d
e
llin

g
 a

n
d

 tra
n

sfo
rm

a
tio

n

- a
n

a
ly

sis (sim
u

la
tio

n
)

-M
o
n

ito
rin

g

-A
d

a
p

ta
tio

n

Figure 2.2: JRA-2 Layering

S-Cube – CD-JRA-2.2.2 (Version: March 16, 2009) 10

Chapter 3

Service Composition Models

3.1 Service Models

In this section, we discuss two different approaches for the modeling of services, (i) biological
inspired service models and (ii) semantic service models, that both can serve as foundation for
the service life cycle introduced in Section 2. Both models extend the current service model
with additional descriptions that provide means for additional meta information.

Biological inspired service models focus on dynamic aspects of services and study the
evolution of services. The goal is to understand factors that influence the service during
its life cycle and to analyze the impacts of service related changes in the context of service
ecosystems.

Semantic service models make use of rich meta data, like ontologies, to extend existing
service descriptions to allow for reasoning on services. With this additional, well structured
and semantically enriched data, adaptation processes can be supported, without the need for
human intervention on a technical level.

3.1.1 Biologically Inspired Service Models

Services are subject to changes during their life cycle. These changes, or adaptions, have
different causes, like the change of service requirements, change in the service usage, etc., as
discussed in [3]. We can observe various types of changes, for instance QoS changes, interface
modification or changes in the overall semantics of services [4]. These change processes can be
regarded as service evolution, since these processes have some similarities with the evolution
in a biological sense. As discussed in [5], there is no exact mapping of biological terms to
services. Instead we focus on a core set of concepts that we borrow biological evolution to
explain service evolution. Like in biology, we intend to consider services as individuals that are
able to reproduce itself in a service ecosystem. Unlike living beings, services do not actively
procreate, but depend on external mechanisms that allow the procreation of services. In the
context of service evolution, composition can be regarded as service procreation, since the
result of a service composition is a new service that exists within the service ecosystem. A
central aspect of services with regard to evolution is the notion of fitness. In a strict biological
sense fitness refers to the possibility of survival of an individual in a certain environment. If
we transform this idea to services, fitness defines the degree to which a service is adapted to
its environment and how well it is adopted by users. This degree of service fitness can be
defined with various metrics, an example is the classification by QoS attributes (response
time, availability, cost, provided data quality, etc.) [6]. A deeper discussion of the semantics
of the term evolution is out of the scope of this deliverable, for a detailed discussion about
the terms, the interested reader is pointed to [7].

Another aspect that requires extensive investigation concerns the environment in which
services operate [8]. We consider the environment as set of artifacts and stakeholders that

11

3.1. SERVICE MODELS

have impact on the service. In such environments, we can observe dependencies of services
on other elements of the environment, ecosystem respectively. From a business perspective,
we can observe KPIs that measure and evaluate how successful a service is and thus serve
as input for service fitness. From a technical perspective, we can observe two categories
of dependencies, (1) a service may depend on other services (e.g., a service calls another
service as part of a service composition) and (2) a service may depend on other resources
(e.g., database, computational resources). If these external - from a service point of view -
resources change, we can observe also impacts on the service itself.

As mentioned above, complementary to technical dependencies, services also depend on the
stakeholders interact in a service ecosystem [3]. Stakeholders are either persons or organizations
that have interest in service. An example is an organization (e.g., non government organization,
etc.) that offers information services to its customers. These stakeholders control the actual
life-cycle of services. In particular, in service ecosystems we can observe five interacting
stakeholders which we define as follows:

• Service developer. Service developers creates the service by implementing the service.
Thus, service developers control the source code of services and manage the development
of services.

• Service user. Service user define requirements that services must fulfill and use them.
Service users, service usage respectively, can be regarded as major indicator for the
fitness of a service.

• Service integrator. Service integrators integrate (external) services into service based
applications that are used by the end user.

• Service provider. Service providers are responsible for the actual offering of the service.

• Service broker. Service broker manage information that is available for services and
support the service discovery process. They provide access to repositories that store
service related information, like ontological description of services, etc.

The interaction process between the stakeholders is highly dynamic and may result in
changes of available resources. Note that we do not consider the different stakeholders as
mutual exclusive, for instance, a single organization can easily be service provider, service
integrator and service user at the same time. As briefly mentioned above, new requirements
for a service user can result in service interface changes which may have impact on other
services that use the service. These services may not be able to use the service, due to a new
interface. Another example is the addition of competing services to the ecosystem which also
may have consequences for the service usage.

To conclude, services change during their life cycle, because of changes in of service KPIs,
requirements, implementation, etc. These changes originate from various sources, like service
user, service integrator, etc. In order to benefit from a biological service model, we envision
the use of various (historical) service related information as input to such a model. We intend
to use different (QoS) monitoring tools and put the data into the evolutionary service model.
Based on observations of the past, our ultimate goal is to learn from the past and make
predictions of the future service behavior.

The achieve this goal, we need expressive languages that are able to capture the dynamics
of services in service ecosystems, which we are going to study in the future. Such languages
must provide the means to define inter-dependencies between services and their required
resources. Especially run time changes of service quality characteristics and potential effects
of changes need to be described in such languages and integrated into a service model.

S-Cube – CD-JRA-2.2.2 (Version: March 16, 2009) 12

3.1. SERVICE MODELS

3.1.2 Semantic Service Models

Semantically rich service models attempt to address the need for automated and dynamic
service discovery and composition by providing an elaborate description of the service behavior
which is machine-interpretable and machine-processable. Previous service models such as
WSDL [9] have been based on syntactic descriptions, essentially offering an invocation interface
while any other supplementary information is only human-understandable. Semantic Web
technologies provide us with languages and tools to replace these purely syntactic descriptions
with complete representations of what a service is supposed to do under any circumstances.

Semantic service models utilize ontologies and rule languages to express assertions for the
behavior of services, in addition to their inputs and outputs. For instance, OWL-S proposes
the addition of assertions, called preconditions, that must be satisfied prior to the service
execution in order to ensure success, as well as assertions that describe the state of the world
after a successful execution, called effects. Effects are closely related to outputs in the OWL-S
service model, by using the term result to refer to a coupled effect and output. Assertions
can be also expressed on the conditions under which a result occurs. The semantic service
models proposed by other Semantic Web services efforts such as WSMO [10] and SWSO
[11] are similar. In WSMO, assertions that must be satisfied prior to the service execution
are either called preconditions or assumptions, depending on whether they deal with the
information space or the state of the world, respectively. Also, conditions on results are called
postconditions.

Semantic service models such as the ones briefly outlined here succeed in capturing
constraints that deal with the state of the world before the execution of the service and the
state of the world afterwards. Thus, one can be informed of the conditions that must be
met before the execution of a particular service and the conditions that will be true after
a valid execution of that service. The resulting descriptions are far more elaborate than
syntactic descriptions while at the same time assertions are expressed using Semantic Web
rule languages, effectively making them machine-processable. Thus, the goal of automated
and dynamic service discovery and composition is much more feasible than before. However,
there are some issues that have not yet been addressed by any existing semantic service model.
We will address some of these issues in the rest of this subsection.

Augmenting Semantic Service Models with Invariants

In [12], it is argued that current semantic service models are inadequate because they are
incapable of describing more complex assertions, such as conditions that must be satisfied both
before and after service execution. Existing assertions such as preconditions, postconditions,
assumptions and effects refer either to the state before service execution or the state after.
For instance, we cannot express that a given predicate must have the same truth value both
before the service is executed as well as afterwards. To that end, a new kind of constraints,
named invariants, is introduced. Invariants serve a role similar to the integrity constraints
in databases, ensuring the consistency in service execution. A correct service execution is
achieved when preconditions and invariants are satisfied in a state before the service executes
and postconditions and invariants again are satisfied in a state after service execution. If
invariants are not satisfied both before and after service execution, then the resulting state is
inconsistent and we cannot assert that the service has executed correctly.

Invariants have yet to be integrated in any of the existing semantic service models, although
a similar kind of assertions, called execution invariants, that must be satisfied in every state
of a Web service execution have been briefly described in a deliverable by the WSMO working
group [13]. Due to their use in many application scenarios and their assistance in expressing
assertions that are common in Web services, it can be stated without doubt that they should
be included in a semantic service model.

S-Cube – CD-JRA-2.2.2 (Version: March 16, 2009) 13

3.1. SERVICE MODELS

A service model that offers the ability to describe assertions that must be satisfied both
before and after service execution in addition to the usual preconditions and postconditions
can be used to create rich service specifications that can capture the behavior of the service
more accurately. However, this does not come without a cost. Adding a new set of conditions
makes specifications more complex and more vulnerable to a family of problems that appear
in formal specifications using the precondition/postcondition notation. These problems are
related to a well-known problem in the field of Artificial Intelligence, called the frame problem.

The Frame Problem

The frame problem may occur in any formal specification, simple or complex, and mainly
deals with finding a concise and succinct way of expressing that ”nothing else changes” except
for what is explicitly declared in the specification. Descriptions lacking frame axioms are
considered incomplete and may hinder the ability to formally prove properties of Web services
and their behavior. Let’s consider the example of a Web service that withdraws an amount of
money from a bank account associated with a credit card. We will only deal with a subset
of the service specification that deals with the daily withdrawal limit of the account. We
need to consider two different cases. If the daily withdrawal limit has been reached, the
use of the card should be banned for the day. If the limit has almost been reached, the
cardholder should be warned. These postconditions of the service, can be expressed as fol-
lows, using first-order predicate logic1 (we use the variable WL to refer to the withdrawal limit):

withdrawalTotal′(day, account) ≥ dailyLimit(account) ⇒ ban(day, account)

withdrawalTotal′(day, account) < dailyLimit(account)∧
dailyLimit(account)− withdrawalTotal(day, account) ≤ WL ⇒ warn(day, account)

withdrawalTotal′(day, account) < dailyLimit(account)∧
dailyLimit(account)− withdrawalTotal(day, account) > WL ⇒ ¬warn(day, account)

These postconditions, however, do not consider all possible cases for the included predi-
cates and as a result are incomplete. For instance, we need to ensure that all accounts not
associated with the current action remain unchanged. To explicitly state that everything
remains unchanged, except when stated otherwise, we need a set of new clauses. These clauses
are known in literature as frame axioms. The task of writing these clauses is not a trivial
one, mainly due to the inclusion of conditional axioms which leads to many different cases
that need to be examined separately in order to include a different set of frame axioms for
each one of them. For each of the postconditions state above, we need to add a set of frame
axioms shown here:

withdrawalTotal′(day, account) ≥ dailyLimit(account) ⇒ ban(day, account)∧
∀x, y[x '= day ∨ y '= account ⇒ ban′(x, y) ≡ ban(x, y)]
∀x, y[warn′(x, y) ≡ warn(x, y)]

withdrawalTotal′(day, account) < dailyLimit(account)∧
dailyLimit(account)− withdrawalTotal(day, account) ≤ WL ⇒ warn(day, account)∧
∀x, y[x '= day ∨ y '= account ⇒ warn′(x, y) ≡ warn(x, y)]
∀x, y[ban′(x, y) ≡ ban(x, y)]

withdrawalTotal′(day, account) < dailyLimit(account)∧
1For the sake of readability, we assume that all functions used in first-order logic statements in this section

are always defined.

S-Cube – CD-JRA-2.2.2 (Version: March 16, 2009) 14

3.1. SERVICE MODELS

dailyLimit(account)− withdrawalTotal(day, account) > WL ⇒ ¬warn(day, account)∧
∀x, y[x '= day ∨ y '= account ⇒ warn′(x, y) ≡ warn(x, y)]
∀x, y[ban′(x, y) ≡ ban(x, y)]

It should be obvious from the example that stating frame axioms concisely and succinctly
is a complicated task with many different parameters that need to be taken into consideration
and is, in its essence, the frame problem. Moreover, the resulting specification, while being
complete, is also rather lengthy and computing formal proofs based on them is a more difficult
and error-prone task. If we advance even further, attempting to compose such specifications
that include frame axioms, in order to create a composite service specification that is consistent
will most certainly be a challenging task, since we may have to combine frame axioms with
opposite statements for the same predicates. Thus, it is apparent that a major step in our
attempt to create semantically rich service specifications should deal with addressing the
frame problem.

Addressing the Frame Problem

Through the example presented in the previous section, it is apparent that attempting to
completely state all frame axioms when devising Web service specifications is problematic,
especially when the original specifications contain many different conditions. The frame
axioms, as expressed in the example, offer a procedure-oriented perspective to the frame
problem, explicitly asserting what predicates each procedure does not change in addition to
those it changes. In [14], the authors identified this fact as the source of the frame problem
and aimed to replace the procedure-oriented with a state-oriented one, which we will explore
in this section.

Instead of declaring what predicates don’t change in each Web service specification, we
can reverse our viewpoint and declare, for each element of the service specifications we are
creating, which services may result in changing them. Thus, we don’t aim to write a set
of frame axioms for each individual Web service specification, but we create assertions that
explain the circumstances under which each predicate or function might be modified from one
state to another. These assertions, called explanation closure axioms or change axioms in [14],
provide a state-oriented perspective to specifications.

To be able to express the change axioms, a simple extension to the first-order predicate
logic is proposed, that adds a special predicate symbol, named Occur and a special variable
symbol named α. The semantics for these two additions are simple. Variable α is used to
refer to services taking part in the specification. Occur(α) is a predicate of arity 1 that is true
if and only if the service denoted by the variable α has executed successfully. Thus, a further
goal in our attempt to create a semantically rich service model is to integrate change axioms
in service descriptions.

In conclusion, it should be stated that semantically rich service models allow us to
thoroughly know and, in most cases, predict the service behavior under any circumstance.
This demands more expressive service specifications than ones limited to interface descriptions
and may lead to problems such as the frame problem described here, which have to be
addressed before one can harness the complete power that such service models can offer. It
should also be noted that the research goals proposed in this subsection deal mainly with the
functional properties (and, to some extent, the behavioral properties) that may be included in a
semantic service model. However, a complete service model should also include non-functional
properties which deal with security, performance and QoS aspects among others.

S-Cube – CD-JRA-2.2.2 (Version: March 16, 2009) 15

3.2. FORMAL MODELS FOR QOS-AWARE SERVICE COMPOSITIONS

3.2 Formal Models for QoS-Aware Service Compositions

The goal of QoS-aware service compositions is to take into account QoS attributes of individual
services in the composition, and express the aggregate QoS attributes of the whole composition.
In this section we present a preliminary identification of some of the the problems around
QoS-aware service compositions, and give some comments on the ideas towards possible
solutions that are currently work in progress within the S-Cube project and which try to
seamlessly combine QoS and semantic concerns. The quality attributes that are addressed
by this approach can include the traditionally performance-related ones, such as execution
time and availability, or more general quality attributes in the business settings, such as cost.
Therefore, formal models for QoS-aware service compositions must take into account both
the functional behavior, or semantics, of a service composition (accomplishment of the data
processing task it is in charge of), and attainment of the expected quality standards.

The purpose of formal models of QoS-aware service compositions is twofold. They must
be sufficiently expressive to describe a wide class of service compositions and QoS attributes,
while being sufficiently constrained to ensure that standard reasoning tasks on such models
are, at least in common cases, decidable and reasonably efficient. Besides, the formal methods
in general have an advantage of having non-ambiguous meaning, as well as having inference
procedures about model instances that ensure soundness of the reasoning results.

However, the challenge of formulating a formal model that is well-suited for expressing a
wide class of QoS-aware service compositions, as well as for reasoning about them, is not trivial.
Although there is a multitude of general computation models based on different computation
paradigms, as well as a number of service-specific models based on abstract processes or
variants of first-order logic and constraints, none of them encompasses, to the best of our
knowledge, all concerns relevant for modeling of QoS-aware compositions, such as representing
QoS characteristics themselves, accounting for the dynamic nature of compositions, and ability
to handle both quality and semantic (behavioral) aspects.

One direction to devise formal QoS-aware service composition models, with the above
stated desirable properties, can be based on Description Logics (DL) enriched with constraints,
extending earlier work on propagation and resolution for service discovery [15]. The formalism
of DL [16] is well researched and widely used as the basis for many Web-centric reasoning
systems, including the Semantic Web [17] and reasoning on Web services [18]. The way in
which concepts are structured and described in DL is sufficiently similar to the use of classes,
inheritance, attributes and relations encountered in methods of Object-Oriented software
design [19], and should therefore be relatively familiar and intuitively intelligible to a wider
software engineering community. Yet, along with other advantages, DL does provide a formal
and sound basis on which reasoning on services and their QoS-aware compositions can be
safely performed.

In such a DL-based model, QoS attributes could be modeled as approximating functions
taking into account input data, e.g., as functions on the parameters on input messages. Such
data-aware QoS can potentially be applied not only to performance-related QoS dimensions,
but also to other quality dimensions, such as Quality of Information (QoI), Quality of
Experience (QoE), or in some cases even to Quality of Business (QoBiz), as outlined in
JRA-1.3.2.

Constraints can be used to further improve expressiveness of a DL-based model, without
compromising its decidability or excessively increasing the complexity of the resolution
procedure. For instance, constraints can be used to model numerical QoS requirements,
without having to deal with infinite domains directly at the level of DL. Another relevant
improvement can be the use of soft constraints for QoS modeling [20, 21]. The key idea here
is to allow more flexible constraint satisfaction, where inability to satisfy a constraint does
not lead to a failure, but rather incurs a penalty on the solution. Soft constraints can be used
for avoiding failures to discover good-enough solutions with minimal penalty when it is not

S-Cube – CD-JRA-2.2.2 (Version: March 16, 2009) 16

3.3. TRANSACTIONAL WEB SERVICES

guaranteed that solutions that satisfy all constraints (i.e. with zero penalty) can be found
(e.g., in the case of over-constrained problems).

Development of formal models for QoS-aware service composition has to be accompanied
by definition of a set of standard reasoning tasks within that framework, based on a critical
assessment of the existing mechanisms and frameworks. These tasks may include unified
QoS-aware service selection, matchmaking, and deduction of ad-hoc compositions to serve a
particular kind of query. Successful solution to the above outlined challenges would be a key
to practical usability of QoS-aware service composition models, and a foundation for further
advances towards defining specialized software components (possibly services themselves) in
charge of performing automated reasoning tasks for end-users or client services.

3.3 Transactional Web Services

Service oriented architecture (SOA) is a paradigm for organizing and utilizing distributed
capabilities that may be under the control of different ownership domains. By making
resources in a distributed system available as independent composable services, SOAs reduce
complexity and increase flexibility. Composability of services allows organizations to create
(new) applications within their enterprise information systems just by aligning existing services.
Services in an SOA tend to have a “coarse grained” nature. That is, a service often encapsulates
a set of related business functions and consumes considerable computing resources.

Due to the inherent autonomy and heterogeneity of Web services, ensuring composite
services reliability remains a challenging problem. Therefore, using a service assembly requires
major efforts in order to deliver a coordinated collective result. Such coordination efforts
may be addressed solely in the process logic that assembles the services. However, according
to [22], transaction processing concepts are a superior option. By managing a group of
services, transaction processing concepts guarantee that the group of services achieves a
coordinated common, consistent, and mutually agreed outcome. For tightly-coupled systems,
such an approach for tackling coordination is common and ubiquitous. Extending the classical
control flow with a transactional flow (encapsulating a set of recovery mechanisms) is widely
accepted for ensuring composite services reliability. However, current approaches define
recovery mechanisms in and ad-hoc way while they have to respect consistency rules regarding
the control flow.

3.3.1 Transactional behavior in composite Web services

In the loosely coupled environment represented by Web services, long running applications
will require support for recovery and compensation, because machines may fail, processes
may be canceled, or services may be moved or withdrawn. Web services transactions also
must span multiple transaction models and protocols native to the underlying technologies
onto which the Web services are mapped. However, handling failures using the traditional
transactional model for long running, asynchronous, and decentralized activities has been
proven to be unsuitable. Advanced Transaction Models (ATMs) [23] have been proposed to
manage failures, but, although powerful and providing a nice theoretical framework, ATMs
are too database-centric, limiting their possibilities and scope [24] in this context (e.g. their
inflexibility to incorporate different transactional semantics as well as different behavioral
patterns into the same structured transaction). In the same time, workflow has became
gradually a key technology for business process automation [24], providing a great support for
organizational aspects, user interface, monitoring, accounting, simulation, distribution, and
heterogeneity. In our transactional CS model, we propose to combine workflow flexibility and
transactional reliability to specify and orchestrate reliable Web services compositions.

S-Cube – CD-JRA-2.2.2 (Version: March 16, 2009) 17

3.3. TRANSACTIONAL WEB SERVICES

Transactional Web service model

A transactional service, ts, is a triplet ts =(ID ∈ Object, E ⊂ States, T ⊂ T ransition)
where ID is an object designating service ID, E is the set of its states and T is the set of
transitions performing the changes between states.

Each service can be associated to a life cycle statechart. A set of of states (initial, active,
canceled, failed, compensated, completed) and a set of transitions (activate(), cancel(), fail(),
compensate(), complete()) are used to describe the service status and the service behavior.
We distinguish between internal (intra-service) transitions (complete(), fail(), and retry())
and external (inter-services) transitions (activate(), cancel(), and compensate()). External
transitions are fired by external entities (other services, human actor,etc.). Typically they
allow a service to interact with the outside and to specify composite services orchestration.
The internal transitions are fired by the service itself (the service agent) and are invariably
defined. The internal service behavior is refined to express the service transactional properties.

The main transactional properties [25] of a Web service we are considering are retriable,
compensatable and pivot. A service ts is said to be retriable if it is sure to complete after finite
activations. ts is said to be compensatable if it offers compensation policies to semantically
undo its effects. ts is said to be pivot if once it successfully completes, its effects remain and
cannot be semantically undone. Naturally, a service can combine properties, and the set of all
possible combinations is {r; cp; p; (r, cp); (r, p)}.

The requested transactional properties can be expressed by extending the service states
and transitions. For instance, for a compensatable service, a new state compensated and a
new transition compensate() are introduced (e.g., service in figure 3.1.b). Figure 3.1 illustrates
the states/transitions diagram of a retriable service (3.1.c) and states/transitions diagrams of
services combining different transactional properties (figures 3.1.d and 3.1.e).

Figure 3.1: Services states/transitions diagrams according to different transactional properties
[26]

Transactional composite service model

A composite service is a conglomeration of existing Web services working in tandem to offer a
new value-added service [27]. It orchestrates a set of services, as a composite service to achieve a
common goal. A transactional composite (Web) service (TCS) is a composite service composed
of transactional services. Such a service takes advantage of the transactional properties of

S-Cube – CD-JRA-2.2.2 (Version: March 16, 2009) 18

3.3. TRANSACTIONAL WEB SERVICES

component services to specify failure handling and recovery mechanisms. Concretely, a TCS
implies several transactional services and describes the order of their invocation, and the
conditions under which these services are invoked.

Dependencies between services

A TCS defines services orchestration by specifying dependencies between services. They
specify how services are coupled and how the behavior of certain service(s) influence the
behavior of other service(s). A dependency from service s1 to service s2 exists if a transition
of s1 can fire an external transition of s2. A dependency defines for each external transition
of a service a precondition to be enforced before this transition can be fired. We distinguish
between “normal” execution dependencies and “exceptional” or “transactional” execution
dependencies which express the control flow and the transactional flow respectively.

The control flow defines a partial services activations order within a composite service
instance where all services are executed without failing, canceled or suspended.

The transactional flow describes the transactional dependencies which specify the
recovery mechanisms applied following services failures (i.e. after fail() transition). We
distinguish between different transactional dependencies types (compensation, cancellation
and alternative dependencies). Alternative dependencies allow to define a forward recovery
mechanisms. A compensation dependency allows to define a backward recovery mechanism
by compensation. A cancellation dependency allows to signal a service execution failure to
other service(s) being executed in parallel by canceling their execution.

Transactional Recovery Rules

We argue that the recovery mechanisms defined by the Transactional Models (TM) result
from more general recovery rules. The recovery mechanisms are just an interpretation of these
rules according to the structure and transactional semantics considered by the model.

We detect these rules by analyzing the recovery mechanisms defined by the Flexible
Transactions Model (FTM) [28]. The rational for choosing FTM is its relative complex
structure, its set of recovery mechanisms (TF considers both backward and forward recovery
through compensation and alternative respectively) and its use of transaction typing (retriable,
compensatable and pivot as in our transactional model).

A Flexible Transaction (FT) has to respect some structural rules ensuring its reliability:

• after a pivot sub transaction (that corresponds to a component service in our model),
a set of ordered alternative paths are possible such that the last one must be sure to
complete (that means all its sub transactions must be retriable).

• all sub transactions between two pivot sub transactions (or before the first pivot) must
be compensatable.

Respecting this structural rules ensures that a FT is recoverable through compensation
if it does not reach its first pivot, otherwise it will always terminate successfully. Indeed,
in the case of the failure of a sub transaction (which is compensatable), it is possible to
recover through compensation till the previous pivot and try another alternative. By making
abstraction over the structure constraints, we notice that these recovery mechanisms result
from the following more general recovery rules:

R1: when a sub transaction or a path fails, always try another alternative if possible,

R2: when one or a set of sub transaction fails causing the abortion of the whole transaction
or path, compensate the partial work done so far,

S-Cube – CD-JRA-2.2.2 (Version: March 16, 2009) 19

3.3. TRANSACTIONAL WEB SERVICES

However, the FT model does not consider parallel executions. In order to take into account
this parallelism, we add the following rule in the vein of R2.

R3: when one or a set of sub transaction fails causing the abortion of the whole transaction
or path, cancel the running executions.

3.3.2 Transactional WS Patterns

The use of workflow patterns [29] appears to be an interesting idea to compose Web services.
However, current workflow patterns do not take into account the transactional properties
(except the very simple cancellation patterns category [30]). It is now well established that the
transactional management is needed for both composition and coordination of Web services.
That is the reason why the original workflow patterns were augmented with transactional
dependencies, in order to provide a reliable composition [31].

Figure 3.2: Two composite services defined according to the same skeleton

To fulfill the above objective, we use workflow patterns to describe TCS’s control flow
model as a pattern composition. Afterwards, we extend them in order to specify TCS’s
transactional flow, in addition to the control flow they are considering by default. Indeed, the
transactional flow is tightly related to the control flow. The recovery mechanisms (defined by
the transactional flow) depends on the execution process logic (defined by the control flow).
Figure 3.2 illustrates this by considering an application dedicated to the online purchase of
personal computer. This application is carried out by a composite service. Services involved in
this application are: the Customer Requirements Specification (CRS) service used to receive
the customer order and to review the customer requirements, the Order Items (OI) service
used to order the computer components if the online store does not have all of it, the Payment
by Credit Card (PCC) service used to guarantee the payment by credit card, the Computer
Assembly (CA) service used to ensure the computer assembly once the payment is done and
the required components are available, and the Deliver Computer (DC) service used to deliver
the computer to the customer (provided either by Fedex (DCFed) or TNT(DCTNT)).

3.3.3 Validation

Several executions can be instantiated according to the same TCS. The state of an instance of
a TCS composed of n services is the tuple (x1, x2, ..., xn), where xi is the state of service si

S-Cube – CD-JRA-2.2.2 (Version: March 16, 2009) 20

3.4. SERVICE COORDINATION MODELS

at a given time. The set of termination states of a TCS cs, STS(cs), is the set of all possible
terminationstates of its instances.

In order to express the designer’s requirements for failure atomicity, we use the notion of
Accepted Termination States ([32]). In other word, the concept of ATS represents our notion
of correction. An accepted termination state, ats, of a composite service cs is a state for which
designers accept the termination of cs. We define ATS the set of all Accepted Termination
States required by designers.

An execution is correct iff it leads the CS into an accepted termination state. A CS reaches
an ats if (i) it completes successfully or (ii) it fails and undoes all undesirable effects of partial
execution in accordance with designer failure-atomicity requirements [32]. The execution of a
composite service can generate various termination states. A composite service is not valid if
it exists some termination states that do not belong to the ATS specified by the designers.

3.4 Service Coordination Models

As the adoption of SOA grows in enterprises and businesses, more and more complex infor-
mation systems are reworked or designed anew on the basis of the emerging service-oriented
paradigm. As a consequence, the complexity of the conversations that take place among ser-
vices provided by the different players increases accordingly, and connecting complex services
by “pairing” them on a one-to-one basis does not suffice any longer. Instead, supporting
complex, possibly long-lasting multi-party conversations involving a diversity of services
becomes critical.

Additionally, and unlike in the case of short-lived partnerships, adequately managing the
evolution of service-enabled systems that make it possible continuous multi-party conversations
becomes paramount. This includes dynamically replacing partners which take up roles in
a business protocol2 and assessing how this impacts the overall conversation. Operations
exposed by services can not any longer be restricted to a single service provider and service
requester, but have to scope up to multi-party environments, where each service describes
how it can consume and produce messages in conversations involving an arbitrary number of
participants.

At the communication level, business protocols can be very flexible, ranging from con-
ventional inter-organizational point-to-point service interactions to fully blown dynamic
multi-party interactions of global reach within which each participant contributes its activities
and services.

This section will be devoted to giving a global overview of some joint work performed in
collaboration with WP-JRA-2.1. As not all parts of this piece of work have already been
accepted as formal publications, we think that restricting ourselves to attaching just these
accepted papers would give a partial view of this work which would fail to convey the ideas
behind it. Therefore, we have decided not to physically attach papers on this issue to the
present deliverable, and instead include a more complete set of papers in a later deliverable,
probably within WP-JRA-2.1.

3.4.1 Representation Formalisms

The research community is investigating the formalisms best suited to represent and reason with
multi-party environments.These are collectively called business protocol languages. Proposals
for business protocol languages range from adapted business process languages like BPEL-
light [33, 34], more formal approaches based on different calculus (e.g., π-calculus [35, 36]),
Deterministic Finite Automata (DFA, especially timed automata [37, 38]) and Petri-Nets [39].
Business protocol languages represent a bridge between business protocols seen from their

2Bearing in mind that the relation partner-to-role need not be a one-to-one mapping.

S-Cube – CD-JRA-2.2.2 (Version: March 16, 2009) 21

3.4. SERVICE COORDINATION MODELS

start

! ""
!

order
prepared !"#$%&'(order

approved

!"#$%&'(
change

proposed

!"#$%&'(
change

approved

!"#$%&'(

order sent!"#$%&'(order
refused !"#$%&'(order

canceled

!"#$%&'()*+,-./0
order

accepted

!"#$%&'(
order

confirmed

!"#$%&'()*+,-./0

t1:prepare order,p1,{p2}

!!

t2:approve order,p2,{p1}
""

t3:send order,p1,{p3},t2≤2 hours

##t4:order accepted,p3,{p1}
$$

t5:confirm order,p1,{p2,p3}
%%

t6:reject order,p3,{p1},t1≤2 hours

&&

t7:submit change,p1,{p2},t2≤12 hours

''
t8:approve change,p2,{p1},t7≤12 hours

((

t9:submit order,p1,{p3},t8≤1 day

))

t10:cancel order,p1,{p3,p2},t2>1 day

**

Figure 3.3: Purchase Order : an example of a business protocol [40].

structural point of view, i.e. how they should interoperate, and their functional aspect on the
other side, i.e. which tools / mechanisms can enable their interoperation. In other words, they
provide a hinge to link abstract views of business protocols and the languages and frameworks
used to implement them, by stating the needs of the format in a formalism closer to the latter.
Within the realm of the S-Cube project, this opens the possibility of acting as one of the bonds
between workpackages WP-JRA-2.1 and WP-JRA-2.2. These WPs will gear more towards
providing an extended definition of coordination as a concept and coordination protocols as
concrete instantiations, and classifying them accordingly. The rationale behind this decision
is that not only business protocols, but also choreographies of service compositions, which
are considered at the service composition level, can be viewed as coordination protocols. We
consider this to be part of the future research work.

Service invocations are often represented as point-to-point uni-cast/multi-cast message
exchanges, where messages are basic units of communication among services. One possible
formalism, which we have used in our present work in order to describe multi-party business
protocols for service networks, is a graph-based representation enriched with temporal con-
straints (see Figure 3.3), which permits us to give an intuitive and simple semantics to the
execution of runs (i.e., sequences of time-annotated message exchanges among the different
participants in a protocol). Accepted runs are those which are in an accepting state.

From this point of view, a business protocol can be seen as a graphical or formal vehicle
for representing conversations, where the conversation supported by a business protocol is the
set of all runs that are accepted by the business protocol. The temporal constraints in the
graph determine when the transition it is associated which can be traversed. Note that even
if the number of message exchanges in a run is customarily finite, the number of different
runs that can take place over the same business protocol may be infinite, since, for instance, a
particular message can be sent at infinitely many different times.

Such a graph-based representation makes it also easy to map business protocols to timed
automata [37], therefore making it possible to apply verification procedures developed for this
formalism on our framework.

3.4.2 Towards Truly Distributed Service Networks

One relevant question is up to which point a given (multi-party) business protocol can be
executed in a completely distributed fashion using only the means (i.e., partner interactions)
expressed in the protocol itself. In investigating this [40], we have introduced the requirement
that senders must generate their messages within the correct time windows and that all

S-Cube – CD-JRA-2.2.2 (Version: March 16, 2009) 22

3.4. SERVICE COORDINATION MODELS

participants have to acknowledge the termination of a protocol execution they are part of.
There exist another property - awareness that is additionally inferred and it appears sufficient
for explaining soundness. Transition awareness is related to the ability of participants to know
when some transition can be traversed; this needs additional knowledge on the associated
conditions. Similarly, a participant is said to be state-aware of a state if it is aware of every
time that the business protocol enters or leaves that state. Transition- and state-awareness,
which are mutually dependent, are the keys to participant soundness: if participants are aware
of the message-based transitions in which they are involved, they have enough understanding of
the protocol not to break it without the need of additional synchronization means. Therefore,
all participants can acknowledge when the protocol has terminated.

An additional relevant property of choreography business protocols, called time-soundness,
is related to the ability of protocols to avoid stalling caused by participants not generating
messages when they ought to. Service network protocols that are both time and participant
sound are called fully sound. Fully sound multi-party choreography business protocols rely
solely on message exchanges as the only means of communication and can be executed consis-
tently in a completely distributed manner, while guaranteeing termination. Our framework
allows the description of business protocols and verification of their temporal properties using
model checking of timed automata. Fully sound multi-party choreography business protocols
contribute towards a comprehensive theory of management of business protocols for service
networks.

3.4.3 Initial Steps Towards Multi-Party BP Evolution: Replaceability and
Compatibility

The communication among participants involved in a business protocol can be structured
either as orchestrations, which describe the local point of view of one of the participants
(the subject), or as choreographies, which provide a global view. Relating orchestrations and
choreographies is instrumental to frame the “big picture” of business protocol evolution: how
business protocol models can evolve in order to address new/updated requirements such as
changes to the behavior of partners, KPIs and QoS parameters to be met, and so on.

Most of our work on replaceability is driven, on one hand, by the need for every participant
(which has a role which can be exemplified by an orchestration) to send / accept the messages
needed by the business protocol (this is somehow related to the behavior of the participant)
and, on the other hand, to abide by the time constraints put forward by the choreography and
represented as constraints associated by transitions of the automaton modeling the business
protocol (see, again, Figure 3.3). This is a concern shared with the workpackage JRA-1.3,
where timing is one of the QoS attributes. Respecting these time constraints so that e.g.
partner replacements are ensured to be safe is a paramount issue in our work on replaceability,
and will be a crucial point when defining the protocol projection operators.

The Interoperability Problem

We are using as basis of our study of evolution of services in long-lasting multi-party conver-
sations the assumption of the existence of a series of primitives that cater for the evolution of
the associated business protocols. Two essential operations are the analysis of replaceability
and compatibility analyses. The former evaluates to what extent substituting a participant by
another in a business protocol impacts the interoperability with the set of all participants. The
latter assesses whether two or more business protocols can successfully interoperate with each
other. These analyses help to ascertain which changes can be applied to business protocols
while preserving backward compatibility. These operations have been already studied in the
literature [38] for two-party business protocols encoded as orchestrations. However, existing
analysis methods do not apply to multi-party business protocols, nor allow comparison between

S-Cube – CD-JRA-2.2.2 (Version: March 16, 2009) 23

3.4. SERVICE COORDINATION MODELS

Replaceability

Replaceability
between Orches-
trations

Replaceability
of an Orches-
tration with a
Choreography

Replaceability
of a Choreog-
raphy with an
Orchestration

Replaceability
between Chore-
ographies

! ! ! ! ! !"

"

"

"
! ! ! ! ! !

Compatibility
among Orches-
trations

Compatibility
between an Or-
chestration and
a Choreography

Compatibility
between a
Choreogra-
phy and an
Orchestration

! ! ! ! ! !"

"

"

"
! ! ! ! ! !

Compatibility
among Chore-
ographies

Compatibility

++ ,, -- ..

// 00 11
22

reduces to
33! ! ! !

reduces to

44 #$%&'!()*+,

reduces to

''

-
.

/
0

same problem as
35

Figure 3.4: Replaceability and compatibility problems in the multi-party scenario.

choreographies and orchestrations. A classification of replaceability and compatibility scenarios
for multi-party protocols shows that they are more complex than conventional two-party ones,
giving rise to an extension of existing notions of replaceability and compatibility. Figure 3.4
shows a glimpse of the different possibilities.

We have introduced in our work so far, a theory and decision model to perform compatibility
and replaceability analyses of multi-party business protocols. The new proposed primitives
not only cater for uniform replaceability between orchestrations and between choreographies,
but also for mixed flavors of replaceability and compatibility between orchestrations and
choreographies, and, vice-versa. This is considered to be a novel research result in the scope
of S-Cube.

In the current work we propose an approach based on graph-rewriting rules to systemati-
cally extract the orchestration representing the point of view of one of the participants of a
choreography on the overall conversation, and base the replaceability and compatibility deci-
sions on that “artificial” orchestration by means of language inclusion in timed automata [37].
Our extraction process aims at optimizing the similarity between the initial choreography
and the resulting orchestration. That is, it tries to generate orchestrations that share as
much of the structure of the initial choreography as possible (by e.g. maintaining the same
states wherever possible). By doing this, we aim at decreasing (or removing) problems such
as incompatibilities or inconsistencies when running the services.

We have studied compatibility and replaceability between several combinations of orches-
trations and choreographies: replaceability between two orchestrations, compatibility between
an orchestration and a choreography (and vice-versa), replaceability of an orchestration with
a choreography and replaceability of a choreography with an orchestration. All these can be
reduced to the first case - replaceability between two orchestrations (see Figure 3.4). The rest
of the combinations (compatibility among orchestrations and compatibility among a number
of choreographies) are left to further research, since they are actually related to problems of
composition of business protocols.

S-Cube – CD-JRA-2.2.2 (Version: March 16, 2009) 24

Chapter 4

Service Composition Approaches
and Languages

This section focuses on service composition approaches. In the work in this WP we intend
to deal with models for services and service compositions that include QoS and behavioural
information, corresponding languages for describing these models and possibly formal rep-
resentations. These will be used to develop novel approaches for service composition that
take into account (i) the interdependencies between the SCC layer and the BPM and Service
Infrastructure layer and (ii) the QoS-characteristics relevant to SBAs and help enable adapta-
tion of SBAs. Additionally, we intend to map some of the approaches to a concrete service
composition technology and improve this technology if necessary to be able to demonstrate
the feasibility of the chosen approaches. Our intention is also to investigate approaches
for coordination of service compositions, in particular for the out-sourcing and in-sourcing
scenarios. We shall concentrate on defining coordination models needed in service compositions
and their classification.

In this document we cover only some preliminary research results and approaches. As the
project work proceeds we shall improve these approaches and create additional once that cover
the QoS and Adaptation aspects of SBAs from the point of view of the Service Composition
layer and in a coordinated effort with the other WPs in S-Cube.

4.1 Business Process Development using WS-CDL and WS-
BPEL

The approach presented in this section can be considered a top-down approach since it starts
with gathering requirements for the top-level composite service and then refines it to an
executable service composition.

Motivation

In this section we briefly summarize a top-down modeling approach, published in [41], that uses
WS-CDL (Web Service Choreography Description Language) as the choreography description
language and WS-BPEL as the orchestration language. The WS-CDL description captures
the global model of all the participants and their service interactions. Using this global
WS-CDL model as input, the orchestrations in WS-BPEL for each partner are generated.
The motivation for using WS-CDL is based on the fact that it has been one of the first pure
publicly available choreography languages and BPEL did not provide support at the time of
implementing the approach. The novelty of this approach is the consideration of QoS from
initial choreography modeling in form of Service Level Agreements that will be mapped to
enforceable QoS policies in the orchestration layer.

25

4.1. BUSINESS PROCESS DEVELOPMENT USING WS-CDL AND WS-BPEL

Mapping Approach

As shown in Figure 4.1, the language constructs of WS-CDL can be mapped to BPEL allowing
a choreography description to be transformed into separate BPEL processes, one for each
partner in the choreography, including corresponding WSDL descriptions. We do not present
each transformation step in detail, therefore the interested reader is referred to [42, 41],
however, we give a brief overview of the required steps.

CHOREOGRAPHY LAYER ORCHESTRATION LAYER

WS-CDL

PolicyAssertion
PolicyAssertion

WSDLWSDLWSDL

PolicyAssertion
PolicyAssertion

SLA Parameter Policy Assertion

WS-CDL to WSDL Mapping

WS-CDL to BPEL Mapping

SLA to Policy Mapping

SLA (QoS)SLA (QoS)SLA (QoS)

WS-BPELWS-BPELWS-BPEL

WS-PolicyWS-PolicyWS-Policy

invokes

Figure 4.1: Modeling Approach

On the highest level of abstraction (the choreography layer), a number of models have
to be specified which can then be used to generate specific parts for each participant in the
business process on the orchestration layer.

This is achieved by transforming the models from the choreography layer to executable
code in the orchestration layer as depicted in Figure 4.1. The models of the choreography layer
include a choreography description in WS-CDL and one or more SLAs. The choreography
is used to describe the partners in the process and the message exchanges. The SLAs
define obligations and guarantees among the participants. They bridge the gap between the
choreography description and the SLAs. We have annotated the choreography with the SLA
references to allow a pairwise agreement on a specific SLA.

During the transformation, we map the WS-CDL choreography to a number of BPEL
processes (the amount depends on the number of participants) and we generate the WSDL
descriptions of the Web services each partner has to implement and provide to its business
partners. The importance of QoS in cross-organizational business processes makes it necessary
to consider these aspects from the beginning of the development process. Similarly, the SLAs
are transformed to WS-QoSPolicy statements (our extension to WS-Policy – very briefly
described below) that are directly attached to the corresponding partner links in BPEL to
allow an enforcement by a BPEL engine.

Mapping WS-CDL to WS-BPEL. The main goal of transforming WS-CDL to BPEL is
to allow the participants a rapid modeling and development process and generate relevant
BPEL and WSDL documents which can then be used as a basis to implement the private
(non-visible) business logic. The projection of such a global description to endpoint processes
whose interactions precisely realize the global description is called endpoint projection [43].

S-Cube – CD-JRA-2.2.2 (Version: March 16, 2009) 26

4.1. BUSINESS PROCESS DEVELOPMENT USING WS-CDL AND WS-BPEL

Generating WSDL Descriptions. The WSDL descriptions define a static structure which
can be extracted from the choreography without analyzing the choreography flow in detail.
The necessary element mapping from WS-CDL to WSDL can be seen in [42] (Table 2).
The knowledge from this mapping is then used to implement a WSDL generation, which
basically works as follows: We generate a new WSDL document for each roleType of the
choreography if the service interface is invoked somewhere in the choreography flow. The
main idea is to check if the roleType is referenced within a channelType and a variable for
this channelType exists that is used in an interaction with another partner. If this is the
case, the roleType is in use and a WSDL needs to be generated. For details on the algorithm
consult [42].

QoS/SLA Integration. The integration of QoS parameters in Web service based business
process development raises the need for appropriate techniques to consider QoS at the
choreography and orchestration layer. Considering QoS at the choreography layer can be
achieved by using SLAs which focus (among others) on performance and dependability aspects
of the underlying QoS model. In contrast, the integration of QoS at the orchestration layer
can be attained by the use of Web service policies. This section describes how WS-CDL and
BPEL can be extended to support QoS attributes.

As mentioned above, we use SLAs to integrate QoS at the choreography layer. For
the definition of the SLAs we decided to use WSLA as it seems to be more suitable than
WS-Agreement. For the actual integration, we extended WS-CDL with a construct which
holds SLA references.

In order to bring QoS aspects from the choreography to the orchestration layer, SLAs have
to be mapped to the corresponding Web service policies. However, the current WS-Policy
specification focuses on security (WS-SecurityPolicy) and reliable messaging (WS-RMPolicy),
whereas performance and dependability are not addressed. Hence, we had to extend the
WS-Policy framework by defining a WS-QoSPolicy. The WS-Policy Framework therefore
provides a grammar for the definition of domain-specific policies. The WS-QoSPolicy defines
assertions for all QoS attributes. The normative outline of the assertions is shown in Listing 4.1.
It defines type, unit, predicate, and value of the assertion. A concrete example for two
such policy assertions is illustrated in Listing 4.2.! "
<qosp : [QoS] Asse r t i on

un i t=” x s : s t r i n g ”
p r ed i c a t e=” tns :Pred icateType ”
value=” x s : i n t e g e r | x s : f l ow ”/># $

Listing 4.1: WS-QoSPolicy Assertions

! "
<wsp:Po l i cy>

<wsp:Al l>
<qosp:Execut ionTimeAssert ion un i t=” seconds ”

p r ed i c a t e=”Less ” value=”5”/>
<qosp:ThroughputAssert ion un i t=” r eque s t s ”

p r ed i c a t e=”GreaterEqual ” value=”1”/>
</ wsp:Al l>

</ wsp :Po l i cy># $
Listing 4.2: Assertion Example

Our extension of the WSLA schema restricts the SLA parameters to the pre-defined QoS

S-Cube – CD-JRA-2.2.2 (Version: March 16, 2009) 27

4.1. BUSINESS PROCESS DEVELOPMENT USING WS-CDL AND WS-BPEL

attributes introduced in the previous section. Therefore, the SLA can be directly mapped to
the WS-QoSPolicy which consists of the following two steps: Firstly, each SLA is mapped to
a policy and secondly, each SLA parameter is mapped to a policy assertion.

As each SLA may consist of one or more SLOs, we identified three different patterns:

1. One SLO is defined for each SLA parameter.

2. One SLO consists of multiple SLA parameters.

3. SLA parameters are defined in multiple SLOs.

Each of these patterns can be successfully mapped to an equivalent policy. In the first
case, one All operator is used to contain all policy assertions. For each SLO, exactly one
policy assertion will be generated. For example, an SLO SLOServiceExecutionTime defines
an SLA parameter which corresponds to the type ExecutionTime. This parameter will be
mapped to the corresponding policy assertion according to the WS-QoSPolicy.

The definition of a QoS policy and QoS/SLA mapping rules are the fundamental concepts
for considering QoS in Web service based business process development. Yet, the question
remains how to integrate the generated QoS policies in the orchestration layer. Regarding the
top-down modeling approach of Web services, two integration approaches can be differentiated:
Policies can either be attached to service descriptions (WSDL) or be integrated in BPEL
processes.

Attaching policies to WSDL descriptions following the WS-PolicyAttachment [44] specifi-
cation has two main drawbacks. Firstly, service invocations are always subject to a policy,
even if the service consumer has no corresponding SLA. Secondly, the service provider cannot
differ between multiple policies for the same service since policies do not contain information
about the participating parties. Therefore, following the second approach the policies should
be integrated in BPEL processes.

Extensibility in BPEL is achieved by allowing elements from other namespaces. The
BPEL partnerLink element is the place to integrate the policy. For this integration, both
synchronous (request-reply) and asynchronous (callback) message exchange patterns have to
be considered. In contrast to the asynchronous case, the service provider has no additional
information about the service consumer in the synchronous case, because the partnerLink
has no service consumer specific details. Therefore, the policy has to be integrated at
the service consumer side as illustrated in Listing 4.3. Alternatively, one could leverage
WS-PolicyAttachment to do the integration at the corresponding partnerLink.

S-Cube – CD-JRA-2.2.2 (Version: March 16, 2009) 28

4.1. BUSINESS PROCESS DEVELOPMENT USING WS-CDL AND WS-BPEL

! "
<proce s s>

<partnerL inks>
<partnerLink name=”POService”

partnerLinkType=”ns1:POServiceLT”
partnerRole=”POServiceRole ”>

<wsp:Po l i cy xmlns:qosp=” . . . ” xmlns:wsu=” . . . ”
wsu:Id=”xs:QName”
qosp : ope ra t i on=” . . . ”>

. . .
</ wsp :Po l i cy>

</ partnerLink>
. . .

<partnerL inks>
. . .

</ proce s s># $
Listing 4.3: Policy Integration in BPEL

S-Cube – CD-JRA-2.2.2 (Version: March 16, 2009) 29

Chapter 5

Monitoring, Analysis, and
Adaptation of Service Compositions

In this Section we deal with the last three phases of the service composition lifecycle: monitor-
ing, analysis, and adaptation. In the context of adaptable QoS-aware service compositions, our
focus lies on monitoring, analysis, and adaptation based on QoS-related aspects. Monitoring
evaluates QoS properties of service compositions whereby both business-level metrics and
technical QoS metrics are considered. In the analysis phase explanations and predictions of
monitored QoS values are provided. Finally, based on analysis results, service compositions
are adapted and optimized.

5.1 Monitoring and Analysis

Monitoring is the process of collecting relevant information from the execution data of service
compositions and involved services in order to evaluate properties of interest and report results
of that evaluation. Monitored properties can be based on functional aspects (e.g., correctness
properties) or non-functional aspects (e.g., QoS properties). While monitoring focuses on
reporting of values of monitored properties (what?) in a timely fashion, analysis is based
on monitoring results and tries to find explanations for monitored values (why?) or predict
future values.

In the context of adaptable QoS-aware service compositions, our focus lies on monitoring
and analysis of QoS-related aspects. We identify thereby following challenges:

• Cross-Layer Monitoring: Current solutions to service composition monitoring mostly
focus and are constrained to one layer or very specific aspects, e.g., process metrics
as part of business activity monitoring, or QoS metrics as part of SLA monitoring
and do not integrate information from all layers and deal with their dependencies. As
service compositions implement business processes from the BPM layer, and at the same
time are based on technical QoS properties of Web services and IT infrastructure used,
monitoring and analysis of service compositions should take into account both business
related metrics and technical QoS metrics.

• Cause Analysis and Prediction: Besides monitoring of process and QoS metrics, one
is also interested in providing explanations and prediction of their values. Both cause
analysis and prediction should thereby be integrated into the monitoring framework and
provide quick responses in order to enable timely reaction and (pro-active) adaptation
of service compositions.

30

5.1. MONITORING AND ANALYSIS

5.1.1 A Framework for Monitoring and Analysis of QoS-aware Service
Compositions

Figure 5.1 shows a high-level overview of our framework for monitoring and analysis of service
compositions. In our framework we distinguish three different layers. In the process runtime
layer, a WS-BPEL business process is defined and executed. The process can be executed
in a standard WS-BPEL compliant engine, as long as the engine is able to emit the process
information necessary for calculating PPMs in form of process events, as expected in Business
Activity Monitoring (BAM). In the monitoring layer, information about the running business
process and the services it interacts with is collected in order to monitor PPMs, and QoS
metrics. The user defines a set of interesting PPMs and QoS metrics which are to be monitored
and should be available for later cause analysis. Based on these metric definitions, the QoS
monitor, the WS-BPEL engine, and all instrumented services, emit needed events into a
Complex Event Processing [45] (CEP) event cloud. A monitoring tool extracts and correlates
these events and calculates corresponding PPMs and QoS metrics. The evaluated metrics are
displayed in the BAM dashboard and are stored in the metrics database for later analysis.
In the process analysis layer, the collected runtime information is analyzed by the process
analyzer component. Outcomes of the analysis are again displayed in the dashboard to the
users of the system, which can use this resulting information to optimize the business process.

Metrics
Database

WS-BPEL
Engine

Pricess

Monitors
Pricess

Monitors
QoS

Monitor

Services

Extract &

Correlate

25%

50%

75%

BAM
Dashboard

Process
Analyzer

P
ro

c
e
s
s
 R

u
n
ti
m

e
M

o
n
it
o
ri
n
g

A
n
a
ly

s
is

Data Flow

Invocation

Event Cloud

Complex

Event

Processor

Figure 5.1: Monitoring and Analysis Framework Overview

5.1.2 Monitoring Performance of Service Compositions

Service Compositions implement business processes and at the same time they are based on
IT infrastructure and implemented in terms of Web services. This is why we can distinguish
between two different types of characteristics when monitoring the performance of service
compositions:

• Process performance characteristics: As service compositions implement business pro-

S-Cube – CD-JRA-2.2.2 (Version: March 16, 2009) 31

5.1. MONITORING AND ANALYSIS

cesses defined in the BPM layer, we can evaluate business process performance based on
service compositions. Process performance is not only related to time-based characteris-
tics (process duration, deadline adherence), but also to process cost and process quality.
Process Performance is assessed by measuring process performance metrics (PPMs).

• Technical QoS characteristics: A Service Composition run on IT infrastructure and
invokes other Web services for implementing their activities. Thus, its performance
depends on technical QoS characteristics such as availability, response time, and through-
put. These QoS characteristics have also to be measured, and are in particular important
for analysis purposes, as QoS characteristics influence process characteristics and vice
versa (e.g., availability of IT infrastructure influences directly process duration, and
indirectly also process cost, and process quality).

In the following, we explain how PPMs and QoS metrics are monitored in our framework.

PPM Monitoring

Process Performance Metrics (PPMs) are evaluated in our approach based on process events
emitted by a WS-BPEL engine or some other instrumented software system used in the service
composition [46]. Most WS-BPEL engines already support an event-publishing mechanism,
which in most cases is also to some extent configurable on which events to publish (via event
filters). Based on the PPM metrics that have to be monitored, we determine needed events
and their content and create event filters which filter those events from instrumented systems.
The monitoring tool subscribes to these events and evaluates them at process runtime as
they are received. Note that process events have to be correlated based on process instance
identifiers. In special cases, technical process instance identifiers which are part of each event
emited by a WS-BPEL engine, can be used. In the general case, however, business identifiers
are needed (e.g., order ID).

QoS Monitoring

QoS metrics are typically evaluated either by probing (e.g., invoking a service endpoint
for checking its availability) or by instrumentation. We focus on monitoring of the QoS
characteristics availability, response time, and accuracy (defined as 1 - # failed requests/#
total requests). In our approach, we use an external QoS monitor for measuring the availability
of the process engine and partner Web services of the WS-BPEL process. The QoS monitor
polls the corresponding endpoints and emits events which contain information on their
availability at a certain point in time. An approach to measuring response time and accuracy
of partner Web services of a process is to instrument the Web service invocation module of the
WS-BPEL engine. That means that as part of the execution of a WS-BPEL invoke activity,
QoS events are emitted which contain information on the measured QoS data (response time
and in case of accuracy whether the request was successful or failed).

Correlation of PPMs and QoS Metrics

If we want to find out the dependencies between PPMs and QoS Metrics (e.g., what was
the availability of the process engine while customer order X has been processed?), they
have to be correlated. The correlation, however, cannot be done based on process instance
identifiers, as QoS metrics are not measured specific to process instances. Assume the PPM
order fulfilment cycle time and its evaluation for a specific process instance, i.e., a specific
customer order. Assume also that we measure availability of process engine. The QoS monitor
collects availability data in a certain time period in which many process instances (customer
orders) are processed. However, as a specific order is processed in a certain time frame, we

S-Cube – CD-JRA-2.2.2 (Version: March 16, 2009) 32

5.1. MONITORING AND ANALYSIS

have to calculate the availability of the process engine in the very same time frame, because
outside of this time frame the availability of the engine has no impact on the PPM value of
that process instance. This is why we need to correlate these metrics based on time frames
(and not process instance identifiers).

5.1.3 Analysis of Factors Influencing KPIs

Besides just monitoring the metrics and providing their values in near real time, we are
interested in providing explanations of their values. When KPIs (key metrics in business
context with assigned target values) do not meet their target values, business users are
interested in finding out the causes and the most influential factors. In our case, we want to be
able to derive the most influential factors and dependencies of KPIs on process performance
and QoS characteristics.

The analysis approach assumes that a set of metrics (both PPMs and QoS metrics) is
monitored. A subset of this potentially big set of metrics is classified as KPIs by defining
target values for them. Typically, KPIs are based on high level PPMs (e.g., order processing
time), but also QoS metrics can theoretically be used as KPIs. Our goal is to find out which
of the QoS and process characteristics represented by the whole set of monitored metrics has
the most influence when KPIs violate their target values. The output of dependency analysis
is a decision tree that presents the most important factors of influence of process performance.
We refer to this tree as dependency tree, because it represents the main dependencies of a
business process KPI on technical and process metrics, i.e., the metrics which contribute
“most often” to the failure or success of a KPI of a process instance.

Response Time
Banking Service

Customer IdKPI violated

> 210ms < 210ms

KPI fulfilled

= '1234'!= '1234'

KPI violated

Figure 5.2: Example Dependency Tree

An example dependency tree is shown in Figure 5.2. In this example, the most influential
factor is the response time of the banking service, since a delay in this service generally leads
to a violated KPI. However, even if the banking service response time is acceptable (below
210 time units in this example), the KPIs are still often violated if the order is placed by the
customer with the ID ’1234’.

Users can use the dependency tree to learn about possible corrective actions if a process
underperforms. For example, considering the example in Figure 5.2, the user can take the
corrective action to replace the “Banking Service” against a service with better response time,
if such a service is available. Of course, such a replacement could happen in a (semi-)automated
way, if the monitoring and analysis framework is integrated with adaptation mechanisms for
service compositions.

Our approach to dependency analysis is based on decision tree classification, a well-known
technique from the area of machine learning [47], to automatically learn dependency trees
from existing process instances. Decision tree classifiers are a standard machine learning
technique for supervised learning (i.e., concepts are learned from historical classifications, in
our case dependency information is learned from monitoring of previous process instances).
Decision trees follow a “divide and conquer” approach to learning concepts – they iteratively

S-Cube – CD-JRA-2.2.2 (Version: March 16, 2009) 33

5.2. ADAPTATION

construct a tree of decision nodes, each consisting of a test; leaf nodes typically represent a
classification to a category. In our case, only two categories exist (KPI has been violated, or
not). The process analyzer is flexible in the concrete algorithm that is to be used to construct
the decision tree (e.g., C4.5 [48], or alternating decision tree [49]) and the parameterization
(e.g., whether to use pruning [50] or not). However, data preprocessing (i.e., the process of
reformatting raw process data in such a way that it can be fed into the machine learning
algorithm) is done automatically after selecting a KPI which is to be analyzed.

5.2 Adaptation

The process-based service composition models are described in terms of the following entities:
the process logic containing control (activities or steps to be performed, their sequencing
and the transition conditions) and data flow; functions that implement the single activities
in the control flow (functions dimension). Some activities/steps of the process model in-
teractions with services, which implement the activities, hence the activities are assigned
service implementations either statically or declaratively (these may contain descriptions of
the functional and non-functional properties the services should have). This section starts
the discussion about the adaptation dimensions (?degree of freedom?) of processes (here the
term service compositions (SC) is used synonymously) followed by the outline of reasons and
motivation for the need of adaptation of the processes, i.e. the adaptation drivers. Finally
some adaptation mechanisms for SC are presented. This document will not present a complete
list of adaptation mechanisms; here, we identify and discuss three such mechanisms, namely
(a) fragmentation of service compositions, (b) service re-binding and (c) biological systems
related approaches for SC adaptation. Note: the classifications of adaptation drivers, the
process adaptation types and the mechanisms presented here are preliminary and will undergo
a refinement process in the later stages of the project, which will be reflected in the subsequent
deliverables.

Work done in this deliverable as well as the WP in general overlaps with the work of WP-
JRA-1.2. The definition of the overlaps is discussed in detail in the documents produced by
IA-3.1 and is out of the scope if this deliverable. The information provided in this document
will be refined in the later stages of the projects and will be described in the follow-up
deliverable document (CD-JRA-2.2.4).

5.2.1 Adaptation dimensions

We differentiate the following orthogonal classifications of process adaptation/change types
(details are presented next):

• Evolutionary changes vs. ad-hoc changes of the process. Evolutionary change/adaptation
is done on the process model and thus on all of the process instances of the process
model whilst an ad-hoc change is performed on single process instances.

• Adaptation of the process logic dimension. On this SC dimension tasks can be inserted,
deleted or substituted. Furthermore, depending on granularity of substitution one
may make coarse- or fine-grained changes of the process logic: there are adaptations
tackling changes on granularity of tasks vs. process-fragments. The transition conditions
guarding the transitions from one activity to the next may also be altered in terms of
using another expression or other variables for its calculation. Another element of the
process logic dimension is the data flow. Changes in the data flow may include: changing
the data flow connectors, if such are available in the SC language or meta-model or at
least the flow of data from one activity to the next and the data dependencies among
activities; changing the variables used ? either the variables used or their data types;
changing the data manipulation specifications.

S-Cube – CD-JRA-2.2.2 (Version: March 16, 2009) 34

5.2. ADAPTATION

• Adaptation on the functional dimension. The possible changes of service composition
that can be done on this dimension are related to the implementation of the activity in
the process model and the information available in the process model. The adaptation
of the functional dimension of SC does not alter the process logic structure (control
flow), but merely exchanges the information related to the service to be invoked. . Such
changes can be related to the binding information (i.e. transport protocol, formats and
location of the service to use) provided for the service to be invoked. In a Web Service
environment, this is the binding information containing the transport protocol, the
formats of the messages exchanged with the Web service and the location of the service.
The binding information may also be specified declaratively in terms of non-functional
properties and discovered during process execution. It is also possible to change the type
of service to be used as an implementation of a process activity, which is another change
type on this dimension. Such a change implies discovering the binding information for
the newly identified service type.

• Design time vs. runtime adaptation. Regarding the timing of adaptation (timely location
in the lifecycle of service composition) it might be performed during the design time
(aka modeling time) or runtime (execution time) of the process. Adaptation done during
the design (modeling) time allows for any change in the process logic as well as in the
functional dimension. Runtime adaptation has to be checked for correctness, since it
influences one or more process instances. Runtime changes may be of any of the kinds
specified in the adaptation types presented above. Depending on the required adaptation
type different mechanisms need to be devised.

• Proactive vs. reactive adaptation: adaptation done in order to avoid failures or adapta-
tion done as reaction to the identified failures.

5.2.2 Classification of Adaptation Drivers

The need and motivation for adaptation arises because of different reasons which we denote as
adaptation drivers. The adaptation mechanisms are the solutions needed to react to the need
for adaptation expressed by these adaptation triggers. In the following we briefly outline the
preliminary identified drivers and discuss some of them in more detail. For now we identify
the following critical drivers for SC adaptation: (i) changes in requirements produced by
requirements engineers, (ii) results of testing services associated to single process activities,
(iii) results of analysis and monitoring and (iv) identified failures of services meant to perform
process activities.

The need for adaptation of service compositions may be expressed in terms of recommen-
dations of requirements engineers. Service compositions have to satisfy a set of requirements
including business requirements expressed via Key Performance Indicators and metrics stated
in Service Level Agreements, as well as technical requirements as Quality of Services. Due
to the dynamics of the service landscapes and changes in the business environment new
requirements might be added or already existing ones might be modified. These requirements
might put new constraints on the functional and non-functional properties of the services
used in the compositions. The changes in set of requirements may imply the need for changes
in different dimensions the service compositions, which is in the scope of future work in this
WP. Requirements engineering changes may also result in adaptation during design time or
run time of service compositions, and may need to be enforced on the level of process model
or on some instances only.

Analysis on formal models triggers the adaptation during the design time whilst monitoring
and results of the analysis data gathered for monitoring may trigger both design time and
runtime adaptation.

S-Cube – CD-JRA-2.2.2 (Version: March 16, 2009) 35

5.2. ADAPTATION

The testing phase of Service Based Applications in contrast to testing of classical software
applications might overlap with the execution phase of SBA. Service compositions (process
models and instances) may be adapted in order to avoid the errors identified by the e.g.
online testing of individual services. Parallel to the execution of the process instance it?s
not yet invoked services might be tested. If the online testing procedure identifies faults an
alternative service should be chosen by the middleware, based on the original service discovery
and selection requirements

5.2.3 Adaptation Mechanisms

The types of service adaptation to be used with service compositions depend on the flexi-
bility of the chosen modeling style and employed service composition language. In order to
accommodate certain types of adaptation the process modeling language should incorporate
corresponding mechanisms on the one hand, thus the need to employ additional mechanisms
would be discarded. On the other hand the support of adaptation functionality may be
enabled by the middleware, like for instance, support for dynamic binding to services. For
the cases where neither the service composition language, nor the middleware can enable a
particular adaptation type, a new technique must be developed and implemented in terms of
an adaptation mechanism.

The focus of this deliverable will be mainly on the initial overview of methods addressing
the fragmentation methods as well as mechanisms of re-binding services to process activities.
We will relate these mechanisms to the adaptation dimensions presented above and the
currently identified adaptation drivers. In the follow-up deliverables these approaches will be
further developed and others will be devised.

The adaptation through fragmentation supports the in- and out-sourcing scenarios. A
process fragment is identified might be replaced by a single service from some service provides
on the one hand. On the other hand one process might be split into several processes because
of e.g. new requirements like improved resource utilization, organizational optimization and
other requirements [51]. In order to support the process fragmentation additional coordination
mechanisms may be needed. Depending on the need for fragmentation and on the mechanism
and rules used for the fragmentation, different coordination protocols have to be created in
order to maintain the original logic of the non-fragmented process intact.

For that fact, the formal direction we are investigating to carry out the fragmentation
process and the coordination protocols can be based on temporal logic, helping to provide
reasoning mechanisms upon the coordination protocols. The formalism of temporal logic [52]
is well suited and enough expressive and widely used in the distributed real time systems
[53, 54].

One mechanism for adaptation on the functional dimension is the dynamic binding to
services during the process runtime: services assigned to the tasks may be exchanged in
reaction to an adaptation driver. The middleware takes care of discovery of the alternative
service satisfying the given requirements. In [55] the focus is on the modification of the
assignment of service implementations to process tasks during run-time. The paper presents
the mechanism for dynamic binding and substantiates how this mechanism can be used as a
reaction to adaptation drivers originating from requirement engineering, online testing and
due to identified service faults.

The work presented in [55] integrates knowledge from the areas of requirements engineering,
online testing and state-of-the-art adaptation mechanisms for service compositions. The paper
shows clearly that the dynamic binding strategy driven by pre-described service requirements
is beneficial over the static binding strategy (more on service binding strategies can be found in
[56]). The dynamic binding strategy is a mechanism that can be used when executing service
compositions to resolves automatically all service faults, e. g. due to unavailable service
implementations The mechanism requires leaving the choice of concrete service implementing

S-Cube – CD-JRA-2.2.2 (Version: March 16, 2009) 36

5.2. ADAPTATION

an activity open till the execution of the composition (which means that no binding information
is available during modelling). During process execution the discovery and selection of the
concrete service to implement the activity is delegated to the service middleware, the selection
criteria must be provided by the process itself. The mechanism has been implemented in
prototypes.

In contrast, the static binding strategy, however, requires a modification of the process
model and its redeployment, unless the so-called parameterized processes are used, where the
composition language is extended to enable overwriting the static binding during run time
[57]. The dynamic binding mechanism can be used to enable ad-hoc/instance-based changes
during composition run time and is a modification on the functional level of processes.

In addition, we have identified that requirements engineering and online testing procedures
only need to interact with the enterprise service registry and have no other influence on the
existing service middleware. While the online testing aims to remove faulty services from the
registry, the requirements engineering activity aims to add new and innovative services to it,
which lead to a better fulfilment of the SBA?s requirements.

We are also able to identify future research for the integration of online testing and SC
modelling as well as the integration of requirements engineering with SC modelling. Online
testing techniques require a certain sequence of tests, e. g. the tester needs to know, which
service implementation to test first. This sequence depends heavily on the service compositions
in which the service implementation is used. In addition, so far we have considered only service
testing. However, it is also important to test the whole service composition (integration test).
Techniques need to be developed and integrated with adaptation techniques, which will be
addressed in the subsequent deliverables in this WP.

For the requirements engineering field, the most predominant problem is the mapping of
the requirements to service descriptions, e. g. requirements or goal descriptions using OWL-S,
WSMO or others. This mapping ensures that, for example, services identified as superior in
the requirements engineering activity, are actually given preference during service discovery
carried out by the middleware. In addition, process instances may be tailored to the so-called
context-factors, e. g. processes may be adapted to certain users or a certain device. These
context-aware SC adaptations require a tight integration of SC and requirements engineering
research.

Moreover, by leveraging the emerging wave of innovations in Web 2.0 that promotes a new
paradigm in which both providers and end-users (including non-expert users) can easily and
freely share information and services over the Web, we will provide techniques and concepts
for prediction in order to avoid unacceptable situation while composing services . These, allow
to reuse ”good fragments” and customize shared information from past experiences instead of
developing composition tasks from scratch.

S-Cube – CD-JRA-2.2.2 (Version: March 16, 2009) 37

Chapter 6

Conclusions

In this deliverable we have explored several lines of work, in different stages of development,
which we foresee can bring about advances in mechanisms for service composition. These do
not exclude each other, as they usually tackle different aspects of the overall composition
problem (e.g., quality of service, transactionality, semantics) and different approaches (e.g.,
biologically-inspired, formal models) and concerns common to all these approaches and aspects
(e.g., adaptation and monitoring).

Since the workpackage to which this deliverable contributes is placed at the center of
the software and services stack, it naturally interacts very heavily with the rest of the layers
and workpackages. This is the reason why core concerns (e.g., quality of service) of other
workpackages percolate this deliverable and why there are deliverable sections which explicitly
address topics which are also central issues for other workpackages (e.a., adaptation and
monitoring, in Chapter 5).

38

Bibliography

[1] W. T. Tsai, “Service-oriented system engineering: A new paradigm,” in Service-Oriented
System Engineering, 2005. SOSE 2005. IEEE International Workshop, Beijing, China,
2005, pp. 3– 6.

[2] M. P. Papazoglou, “Service-oriented computing: Concepts, characteristics and directions,”
in Proceedings of the Fourth International Conference on Web Information Systems
Engineering (WISE). IEEE Computer Society, 2003.

[3] M. Treiber, H.-L. Truong, and S. Dustdar, “Semf - service evolution management
framework,” Software Engineering and Advanced Applications, 2008. SEAA ’08. 34th
Euromicro Conference, pp. 329–336, Sept. 2008.

[4] M. P. Papazoglou, “The challenges of service evolution,” in CAiSE ’08: Proceedings of
the 20th international conference on Advanced Information Systems Engineering. Berlin,
Heidelberg: Springer-Verlag, 2008, pp. 1–15.

[5] G. Canfora, “Software evolution in the era of software services,” in IWPSE ’04: Proceed-
ings of the Principles of Software Evolution, 7th International Workshop. Washington,
DC, USA: IEEE Computer Society, 2004, pp. 9–18.

[6] Y. Ma and C. Zhang, “Quick convergence of genetic algorithm for qos-driven web service
selection,” Comput. Netw., vol. 52, no. 5, pp. 1093–1104, 2008.

[7] R. T. Mittermeir, “Software evolution: let’s sharpen the terminology before sharpening
(out-of-scope) tools,” in IWPSE ’01: Proceedings of the 4th International Workshop on
Principles of Software Evolution. New York, NY, USA: ACM, 2001, pp. 114–121.

[8] A. P. Barros and M. Dumas, “The rise of web service ecosystems,” IT Professional, vol. 8,
no. 5, pp. 31–37, 2006.

[9] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, “Web Services Description
Language (WSDL) 1.1,” Mar 2001, http://www.w3.org/TR/2001/NOTE-wsdl-20010315.

[10] H. Lausen, A. Polleres, and D. Roman, “Web Service Modelling Ontology (WSMO),”
World Wide Web Consortium, 2005, W3C Member Submission. [Online]. Available:
http://www.w3.org/Submission/WSMO/

[11] S. Battle, A. Bernstein, H. Boley, B. Grosof, M. Gruninger, R. Hull, M. Kifer, D. Martin,
S. McIlraith, D. McGuinness, J. Su, and S. Tabet, “Semantic Web Services Ontology
(SWSO),” World Wide Web Consortium, 2005, W3C Member Submission. [Online].
Available: http://www.w3.org/Submission/SWSF-SWSO/

[12] V. Alevizou and D. Plexousakis, “Enhanced Specifications for Web Service Composition,”
in ECOWS ’06: Proceedings of the European Conference on Web Services. Zurich,
Switzerland: IEEE Computer Society, 2006, pp. 223–232.

39

BIBLIOGRAPHY

[13] U. Keller and H. Lausen, “Functional Description of Web Services,” ESSI
WSMO Working Group, 2006, WSML Deliverable D28.1 v0.1. [Online]. Available:
http://www.wsmo.org/TR/d28/d28.1/v0.1/d28.1v0.1 20060113.pdf

[14] A. Borgida, J. Mylopoulos, and R. Reiter, “On the Frame Problem in Procedure Spec-
ifications,” IEEE Transactions on Software Engineering, vol. 21, no. 10, pp. 785–798,
1995.

[15] S. Benbernou and M.-S. Hacid, “Resolution and Constraint Propagation for Semantic
Web Services Discovery,” Distributed and Parallel Databases, vol. 18, no. 1, pp. 65–81,
July 2005.

[16] F. Baader, C. Lutz, H. Sturm, and F. Wolter, “Basic description logics,” in The Descrip-
tion Logic Handbook: Theory, Implementation, and Applications. Cambridge University
Press, 2003, pp. 43–95.

[17] F. Baader, I. Horrocks, and U. Sattler, “Description logics as ontology languages for
the semantic web,” in Festschrift in honor of Jörg Siekmann, Lecture Notes in Artificial
Intelligence. Springer-Verlag, 2003, pp. 228–248.

[18] F. Baader, C. Lutz, M. Miličić, U. Sattler, and F. Wolter, “A description logic based
approach to reasoning about web services,” in In Proceedings of the WWW 2005 Workshop
on Web Service Semantics (WSS2005, 2005.

[19] D. Calvanese and M. Lenzerini, “Reasoning on uml class diagrams in description logics,”
in In Proc. of IJCAR Workshop on Precise Modelling and Deduction for Object-oriented
Software Development (PMD, 2001.

[20] S. Bistarelli, U. Montanari, F. Rossi, and F. Santini, “Unicast and Multicast Qos Routing
with Soft Constraint Logic Programming,” CoRR, vol. abs/0704.1783, 2007.

[21] D. Hirsch and E. Tuosto, “SHReQ: Coordinating Application Level QoS,” in SEFM,
2005, pp. 425–434.

[22] P. Hrastnik and W. Winiwarter, “Twso — transactional web service orchestrations,”
in NWESP ’05: Proceedings of the International Conference on Next Generation Web
Services Practices. Washington, DC, USA: IEEE Computer Society, 2005, p. 45.

[23] A. K. Elmagarmid, Ed., Database transaction models for advanced applications. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1992.

[24] W. M. P. van der Aalst and K. M. van Hee, Workflow Management: models, methods and
tools, ser. Cooperative Information Systems, J. W. S. M. Papazoglou and J. Mylopoulos,
Eds. MIT Press, 2002.

[25] S. Mehrotra, R. Rastogi, H. F. Korth, and A. Silberschatz, “A transaction model for
multidatabase systems.” in ICDCS, 1992, pp. 56–63.

[26] S. Bhiri, O. Perrin, and C. Godart, “Ensuring required failure atomicity of composite
web services,” in WWW, 2005, pp. 138–147.

[27] B. Medjahed, B. Benatallah, A. Bouguettaya, A. H. H. Ngu, and A. K. Elmagarmid,
“Business-to-business interactions: issues and enabling technologies,” The VLDB Journal,
vol. 12, no. 1, pp. 59–85, 2003.

[28] A. Zhang, M. Nodine, B. Bhargava, and O. Bukhres, “Ensuring relaxed atomicity for
flexible transactions in multidatabase systems,” SIGMOD Rec., vol. 23, no. 2, pp. 67–78,
1994.

S-Cube – CD-JRA-2.2.2 (Version: March 16, 2009) 40

BIBLIOGRAPHY

[29] W. M. P. van der Aalst, A. P. Barros, A. H. M. ter Hofstede, and B. Kiepuszewski,
“Advanced Workflow Patterns,” in 5th IFCIS Int. Conf. on Cooperative Information
Systems (CoopIS’00), ser. LNCS, O. Etzion and P. Scheuermann, Eds., no. 1901. Eilat,
Israel: Springer-Verlag, September 6-8, 2000, pp. 18–29.

[30] W. M. P. van der Aalst and A. H. M. ter Hofstede, “Yawl: yet another workflow language.”
Inf. Syst., vol. 30, no. 4, pp. 245–275, 2005.

[31] S. Bhiri, C. Godart, and O. Perrin, “Transactional patterns for reliable web services
compositions.” in ICWE, 2006, pp. 137–144.

[32] M. Rusinkiewicz, W. Klas, T. Tesch, J. Wasch, and P. Muth, “Towards a cooperative
transaction model: The cooperative activity model,” in In Proc. of the 21st Int. Conference
on Very Large Databases, 1995, pp. 194–205.

[33] J. Nitzsche, T. van Lessen, D. Karastoyanova, and F. Leymann, “BPELlight,” in BPM,
ser. LNCS, G. Alonso, P. Dadam, and M. Rosemann, Eds., vol. 4714. Springer, 2007,
pp. 214–229.

[34] T. van Lessen, J. Nitzsche, and F. Leymann, “Formalising Message Exchange Patterns
using BPELlight,” in IEEE SCC (1). IEEE Computer Society, 2008, pp. 353–360.

[35] R. Milner, “Elements of interaction,” Communications of the ACM, vol. 36, no. 1, pp.
78–89, 1993.

[36] A. Lapadula, R. Pugliese, and F. Tiezzi, “A Calculus for Orchestration of Web Services,”
in ESOP, ser. Lecture Notes in Computer Science, R. D. Nicola, Ed., vol. 4421. Springer,
2007, pp. 33–47.

[37] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical Computer Science,
vol. 126, pp. 183–235, 1994.

[38] J. Ponge, B. Benatallah, F. Casati, and F. Toumani, “Fine-Grained Compatibility and
Replaceability Analysis of Timed Web Service Protocols,” in ER, ser. LNCS, C. Parent,
K.-D. Schewe, V. C. Storey, and B. Thalheim, Eds., vol. 4801. Springer, 2007, pp.
599–614.

[39] H. Foster, S. Uchitel, J. Magee, and J. Kramer, “Compatibility Verification for Web
Service Choreography,” in ICWS. IEEE Computer Society, 2004, pp. 738–741.

[40] M. Mancioppi, M. Carro, W.-J. van den Heuvel, and M. P. Papazoglou, “Sound Multi-
party Business Protocols for Service Networks,” in Proceedings of the Sixth International
Conference on Service Oriented Computing, ser. LNCS, vol. 5364. Springer-Verlag,
December 2008, pp. 302–316.

[41] F. Rosenberg, A. Michlmayr, and S. Dustdar, “Top-Down Business Process Development
and Execution using Quality of Service Aspects,” Enterprise Information Systems, pp.
459–475, November 2008.

[42] F. Rosenberg, C. Enzi, C. Platzer, and S. Dustdar, “Integrating Quality of Service
Aspects in Top-Down Business Process Development using WS-CDL and WS-BPEL,” in
Proceedings of the 11th Enterprise Computing Conference (EDOC’07), Annapolis, MD,
USA. IEEE Computer Society, 2007, pp. 15–26.

[43] M. Carbone, K. Honda, N. Yoshida, and R. Milner, “Structured Communication-Centred
Programming for Web Serices,” in Proceedings of the 16th European Symposium on
Programming (ESOP’07), Barga, Portugal, 2007.

S-Cube – CD-JRA-2.2.2 (Version: March 16, 2009) 41

BIBLIOGRAPHY

[44] Web Services Policy Attachment, http://www-128.ibm.com/developerworks/
webservices/library/specification/ws-polatt/, W3C, 2004, uRL: http://www-
128.ibm.com/developerworks/webservices/library/specification/ws-polatt/ (Last
accessed: May 9, 2007).

[45] D. Luckham, The Power of Events: An Introduction to Complex Event Processing in
Distributed Enterprise Systems. Addison-Wesley Professional, May 2002.

[46] B. Wetzstein, S. Strauch, P. Majdik, and F. Leymann, “Modeling and Monitoring
Process Performance Metrics of BPEL Processes,” University of Stuttgart, Germany,
Technical Report 2008/05, Juli 2008. [Online]. Available: http://www.informatik.uni-
stuttgart.de/cgi-bin/NCSTRL/NCSTRL view.pl?id=TR-2008-05&engl=0

[47] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and
Techniques, 2nd ed. Morgan Kaufmann, 2005. [Online]. Available: /bib/private/witten/
DataMiningPracticalMachineLearningToolsandTechniques2ded-MorganKaufmann.pdf

[48] J. R. Quinlan, C4.5: Programs for Machine Learning. Morgan-Kaufmann, 1993.

[49] Y. Freund and L. Mason, “The Alternating Decision Tree Learning Algorithm,” in
Proceedings of the 16th International Conference on Machine Learning (ICML ’99). San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1999, pp. 124–133.

[50] J. Mingers, “An Empirical Comparison of Pruning Methods for Decision Tree Induction,”
Machine Learning, vol. 4, no. 2, pp. 227–243, 1989.

[51] R. Khalaf and F. Leymann, “Role-based Decomposition of Business Processes using
BPEL,” in International Conference on Web Services (ICWS 2006). IEEE Computer
Society, September 2006, pp. 770–780.

[52] M. Y. Vardi, “Branching vs. linear time: Final showdown,” in TACAS 2001: Proceedings
of the 7th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. London, UK: Springer-Verlag, 2001, pp. 1–22.

[53] F. Wang, A. K. Mok, and E. A. Emerson, “Distributed real-time system specification and
verification in aptl,” ACM Trans. Softw. Eng. Methodol., vol. 2, no. 4, pp. 346–378, 1993.

[54] M. P. Singh, “Distributed enactment of multiagent workflows: temporal logic for web
service composition,” in AAMAS ’03: Proceedings of the second international joint
conference on Autonomous agents and multiagent systems. New York, NY, USA: ACM,
2003, pp. 907–914.

[55] A. Gehlert, J. Hielscher, O. Danylevych, and D. Karastoyanova, “Online Testing, Re-
quirements Engineering and Service Faults as Drivers for Adapting Service Compositions,”
in ServiceWave 2008, MONA+. Springer Berlin Heidelberg, Februar 2009.

[56] F. Curbera, F. Leymann, T. Storey, D. Ferguson, and S. Weerawarana, Web Services
Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-
Reliable Messaging and More. Prentice Hall PTR, 2005.

[57] D. Karastoyanova, F. Leymann, J. Nitsche, B. Wetzstein, and D. Wutke, “Utilizing
Semantic Web Service Technologies for Automatic Execution of Parameterized BPEL
Processes,” in XML Tage 2006. Unbekannt, September 2006.

S-Cube – CD-JRA-2.2.2 (Version: March 16, 2009) 42

CD – JRA – 2.2.2

Paper [1]:

Wetzstein B., Leitner P., Rosenberg F., Brandic, F., Dustdar,
S., Leymann F.:

Monitoring and Analyzing Influential Factors of

Business Process Performance

Monitoring and Analyzing Influential Factors of
Business Process Performance

Branimir Wetzstein1, Philipp Leitner2, Florian Rosenberg2, Ivona Brandic2,
Schahram Dustdar2, and Frank Leymann1

1 Institute of Architecture of Application Systems, University of Stuttgart, Germany
Universitätsstraße 38, 70569 Stuttgart, Germany

lastname@iaas.uni-stuttgart.de
2 Distributed Systems Group, Vienna University of Technology

Argentinierstrasse 8, 1040 Wien, Austria
lastname@infosys.tuwien.ac.at

Abstract. Business activity monitoring enables continuous monitoring
of key performance indicators (KPIs). However, if things go wrong, a
deeper analysis of process performance becomes necessary. Business an-
alysts want to learn about the factors that influence the performance
of business processes and most often contribute to the violation of KPI
target values, and how they relate to each other. We provide a frame-
work for performance monitoring and analysis of WS-BPEL processes,
which consolidates process events and Quality of Service measurements.
The framework uses techniques from the area of machine learning in or-
der to construct tree structures, which represent the dependencies of a
KPI on process and QoS metrics. These dependency trees allow business
analysts to analyze how the process KPIs depend on lower-level process
metrics and QoS characterisitics of the IT infrastructure. Deeper knowl-
edge about the structure of dependencies can be gained by drill-down
analysis of single factors of influence.

1 Introduction

Business Process Management (BPM) encompasses a set of methods, techniques,
and tools for modeling, executing and analyzing business processes of an organi-
zation [1]. Recently, BPM has been supported by a set of tools which have been
integrated in order to support the business process lifecycle in a unified man-
ner. Thereby, business analysts create a business process model, which is then
refined by IT engineers to an executable model. The executable process model
is deployed to a process engine, which executes the process by delegating tasks
to humans and services. The execution of processes is often based on a Service
Oriented Architecture [2] (SOA). In that case, the business process model is
typically implemented as a service composition, for example in WS-BPEL.

An important aspect of the BPM lifecycle is the continuous supervision of
business goals and timely measurement of business process performance. This
is typically supported by business activity monitoring (BAM) technology, which

enables continuous, near real-time monitoring of processes based on an eventing
infrastructure [3]. Analysts define Key Performance Indicators (KPIs) and their
target values based on business goals (e.g., “order fulfillment lead time < 3
days”). KPIs are influenced by a set of Process Performance Metrics (PPM) [4],
which are metrics based on process runtime data (e.g., “number of orders which
can be served from inhouse stock”). PPMs are on a different level of granularity
than KPIs: a KPI measures the success of the process as a whole, while a PPM
captures only a single facet of the process, which is usually not interesting in
isolation. Additionally, KPIs are influenced by technical parameters, i.e., the
Quality of Service (QoS) metrics of the SOA (e.g., the availability of the process
engine or the response time of Web services).

Business Activity Monitoring provides useful information on KPI achieve-
ment. However, the focus is set on the “what” rather than the “why” question.
When KPIs do not meet target values the business analysts are interested in
factors that cause these deviations. Since KPIs potentially depend on numerous
lower-level PPMs and QoS metrics, these causes can be manifold, and are rarely
obvious even to domain experts. In this paper we present an integrated frame-
work for run-time monitoring and analysis of the performance of WS-BPEL
processes. Our main contribution is the presentation of a framework for depen-
dency analysis, a machine learning based analysis of PPMs and QoS metrics,
with the ultimate goal of discovering the main factors of influence of process
performance (i.e., KPI adherence). These factors are represented in an easy-to-
interpret decision tree (dependency tree). We present the general concepts of our
analysis framework, and provide experimental results based on a purchase order
case study, identify cases when dependency trees do not show expected results,
and explain strategies how these problems can be coped with.

The rest of the paper is organized as follows: in Section 2 we present a case
study which we use for explaining our concepts and for experimentation and
explain the research issues that this paper deals with in more detail, Section 3
explains the main ideas of runtime monitoring and dependency analysis, Section
4 describes the implementation of our prototype based on the case study and
experimental results, which are also extensively interpreted, Section 5 discusses
important related work, and Section 6 finally concludes the paper and presents
some future research directions.

2 Case Study

In this section we present a case study which we use in the following sections
for explaining our concepts and which we have implemented and used for exper-
imentation purposes. We have chosen a purchase order scenario consisting of a
customer, a reseller, its two suppliers, a banking service, and a shipping service.
The reseller offers certain products to its customers. It holds a certain part of the
products in stock and orders missing products from suppliers if necessary. The
customer sends a purchase order request with details about the required prod-
ucts and needed amounts to the reseller. The latter checks whether all products

are available in stock in the warehouse. If some products are not in stock, they
are ordered from suppliers. Note that the second supplier is contacted only if
the first (preferred) supplier is not able to deliver. If the purchase order can be
satisfied, the customer receives a confirmation, otherwise the order is rejected.
The reseller waits, if needed, for the supplier to deliver the needed products.
When all products are in place, the warehouse packages the products and hands
them over to the shipment service, which delivers the order to the customer, and
finally notifies the reseller about the shipment. In parallel to the packaging and
shipment, the payment subprocess is performed. Thereby, the customer decides
on the payment style and gives its payment details depending on the payment
style. The reseller contacts a banking service which authorizes the customer and
credits the agreed amount. From the point of view of the reseller, a typical KPI is
the order fulfillment lead time (duration from receiving the customer order until
shipment is received by the customer), as defined in the Supply-Chain Reference
Model (SCOR) [5].

PPMs

Purchase
Order

Process

measured by

Order
Fulfillment
Lead Time

25% 75%

Customer,
Products,

Availability in
Stock, ...

QoS

Service
Availability,
Response
Times, ...

Fig. 1. KPIs, PPMs and QoS metrics

Assuming that this process is implemented using WS-BPEL, the KPI order
fulfillment lead time is potentially influenced by a number of technical and non-
technical factors, such as the response time and availability of Web services,
the customer, or the products ordered (Figure 1). In Table 1, we have provided
an (incomplete) list of potential factors of influence for the KPI from our case
study. Factors can include simple facts from the business process instance, such
as a customer identifier, a product type, or information about which branch of a
process has been executed (e.g., whether the alternative branch “ordering from
external suppliers” needed to be executed). All these facts are accessible from
the process instance, therefore, we have not given a calculation formula for these
PPMs in the table. However, PPMs on a different level of granularity are also
possible, such as the duration of a whole subprocess. Finally, we have given a
few simple examples of QoS metrics, which may influence the KPI performance,
such as the availability of the process engine or single services that the process

relies on, or the response time of these services. A full discussion of possible QoS
metrics is out of scope of this paper. The interested reader may refer e.g., to [6]
for a more complete description of possible QoS metrics and their measurement.
For completeness, we have also provided the possible range for these example
influential factors. Generally, factors of influence can either be nominal values
(i.e., take on one of a finite number of predefined values), or numeric values (e.g.,
integer or real values). Analysts can also define target values for metrics. In the
table we have also given target values for the QoS metrics, and for one of the
PPMs (the duration of the payment subprocess).

Name Type Calculation
Formula

Target
Value

Range

Customer ID PPM {Customer1,
Customer2, . . .}

Product Type PPM {Product1,
P roduct2, . . .}

Shipped from stock PPM {true, false}

Duration of Payment Subprocess PPM tend − tbegin < 4000 ms [0;∞]

Availability Process Engine QoS #available
#checks

> 0.999 [0; 1]

Availability Banking Service QoS #available
#checks

> 0.99 [0; 1]

Response Time Banking Service QoS tend − tbegin < 100 ms [0;∞]

Table 1. Potential Factors of KPI Performance

However, it is not obvious even to experts which of these factors actually
influence the KPI most, and what the structure of the dependencies between
factors of influence is (i.e., some factors are in turn influenced by others, such
as the duration of the payment subprocess which is again influenced by service
response times). These questions are not answered sufficiently by today’s BAM
dashboards – they can only provide status information about KPIs, but do not
allow further analysis of the main causes for violations. Our approach supports
this kind of analysis, which we refer to as dependency analysis (i.e., the analysis
of dependencies of KPIs to PPMs and QoS metrics). Furthermore, more detailed
information about internal dependencies between factors of influence can be
gained by drill-down analysis, i.e., recursively applying dependency analysis to
single factors of influence. This way, detailed insight into the nature of the factors
that influence process performance can be learned by a business analyst.

3 Framework

In this section we describe the concepts of our framework for monitoring and ana-
lyzing factors of influence of business process performance. A high-level overview

of the main components is given in Figure 2. In our framework we distinguish
three different layers. In the process runtime layer, a WS-BPEL business process
is defined and executed. The process can be executed in a standard WS-BPEL
compliant engine, as long as the engine is able to emit the process information
necessary for calculating PPMs in form of process events, as expected by BAM.
In the monitoring layer, information about the running business process and
the services it interacts with is collected in order to monitor KPIs, PPMs, and
QoS metrics. Note that we assume that the user has defined a set of potential
influential factors he wants to monitor for a KPI in order to ensure that cor-
responding metric data is available later on for analysis. Based on these metric
definitions, the QoS monitor and the WS-BPEL engine emit needed events into a
Complex Event Processing [7] (CEP) event cloud. Our monitoring tool extracts
and correlates these events from the cloud and calculates corresponding PPMs
and QoS metrics. The evaluated metrics are displayed in the BAM dashboard
and are stored in the metrics database for later analysis. In the process analy-
sis layer, the collected runtime information is analyzed by the process analyzer
component. Outcomes of the analysis are again displayed in the dashboard to
the users of the system, which can use this resulting information to optimize the
business process.

Metrics
Database

WS-BPEL
Engine

Pricess
MonitorsPricess

MonitorsQoS
Monitor

Services

Extract &
Correlate

25%
50%

75%

BAM
Dashboard

Process
Analyzer

Pr
oc

es
s

Ru
nt

im
e

M
on

ito
rin

g
An

al
ys

is

Data Flow
Invocation

Event Cloud

Complex
Event

Processor

Fig. 2. Monitoring and Analysis Framework Overview

3.1 Monitoring of Influential Factors

In order to be able to analyze the influential factors of process performance in
the analysis component, we first need to monitor the needed metrics. We distin-
guish in our approach between PPMs and QoS metrics, which are supported by
different monitoring mechanisms.

PPM Monitoring PPMs are evaluated based on process events emitted by a
WS-BPEL engine [4]. Most engines support such a mechanism, which in most
cases is also to some extent configurable on which events to publish (via event
filters). Based on the PPM metrics that have to be monitored, an event filter
for the WS-BPEL engine is created, which specifies the events needed for the
calculation. The monitoring tool subscribes to these events and evaluates them at
process runtime as they are received. This is done by “querying” the event cloud.
Note that the correlation of process events of the same process instance (needed
for example for calculation of the duration of an activity) is done based on a
unique process instance identifier, which is part of each event emited by the WS-
BPEL engine. Note also that we do not yet support process data which comes
from external data sources, in which case we would need additional correlation
mechanisms.

QoS Metrics Monitoring QoS metrics are evaluated based on QoS events. These
QoS events are emitted either by an external QoS monitor or by an instrumen-
tation of the WS-BPEL engine itself. At the moment, we focus on monitoring
of the QoS characteristics availability, response time, and accuracy (defined as 1
- # failed requests/# total requests). In our approach, we use an external QoS
monitor for measuring the availability of the process engine and partner Web
services of the WS-BPEL process. The QoS monitor polls the corresponding
endpoints and emits events which contain information on their availability at a
certain point in time. An approach to measuring response time and accuracy of
partner Web services of a process is to instrument the Web service invocation
module of the WS-BPEL engine. That means that as part of the execution of
a WS-BPEL invoke activity, QoS events are emitted which contain information
on the measured QoS data (response time and in case of accuracy whether the
request was successful or failed).

Correlation of PPMs and QoS Metrics There is a technical difference between
an external QoS monitor and a WS-BPEL engine internal instrumentation con-
sidering the correlation of process events and QoS events. As the WS-BPEL
instrumentation is internal to the engine, it has access to the context of the pro-
cess instance. Thus, it is possible to write the process instance identifier as an
attribute into the QoS event which can then be used to correlate with process
events of the same process instance. In case of an external QoS monitor this
is not possible. Assume the KPI order fulfilment lead time and its evaluation
for a specific process instance, i.e., a specific customer order. Assume also that
we have defined availability of process engine as a potential influential factor of

this KPI. The QoS monitor collects availability data in a certain time period
in which many process instances (customer orders) are processed. However, as
a specific order is processed in a certain time frame, we have to calculate the
availability of the process engine in the very same time frame, because outside
of this time frame the availability of the engine has no impact on the KPI value
of that process instance. This is why we need to correlate these metrics based
on time frames (and not process instance identifier).

3.2 Analysis of Influential Factors

We monitor process metrics mainly with the goal of being able to later on per-
form dependency analysis on this data. The main idea of dependency analysis is
to use historical process instances to determine the most important factors that
dictate whether a process instance is going to violate its KPIs or not. The input
of this analysis are stored process instances (i.e., the outcome of historical pro-
cess instances, and the measured metrics associated with this instance), which
are available in the metrics database. The output of dependency analysis is a
decision tree that incorporates the most important factors of influence of process
performance. We refer to this tree as dependency tree, because it represents the
main dependencies of the business process on technical and process metrics, i.e.,
the metrics which contribute “most often” to the failure or success of a process
instance.

Dependency Trees and Drilldown We give an example dependency tree in Figure
3. In this (simple) example, the most influential factor is the response time of the
banking service, since a delay in this service generally leads to a violated KPI.
However, even if the banking services response time is acceptable (below 210 time
units in this example), the KPIs are still often violated if the order is placed by
the customer with the ID ’1234’. Business analysts can use the dependency tree
to learn about the “hot spots” of the process, and inform themselves about
possible corrective actions if a process underperforms. For example, considering
the example in Figure 3, a business analyst can take the corrective action to
replace the “Banking Service” against a service with better response time, if
such a service is available.

Response Time
Banking Service

Customer IdKPI violated

> 210ms < 210ms

KPI fulfilled

= '1234'!= '1234'

KPI violated

Fig. 3. Example Dependency Tree

If the metrics that have been identified as factors of influence have target
values assigned, a further “drill down” analysis can be performed. For this, one
of the factors of influence (e.g., the response time of the banking service) is
selected, and another dependency analysis is launched. This identifies the more
detailed dependencies that influence this specific factor of the overall process
performance (e.g., one could find out that way that the response time of the
banking service strongly depends on the type of the banking account).

Learning Dependency Trees The process analyzer uses decision tree classifica-
tion, a well-known technique from the area of machine learning [8], to auto-
matically learn dependency trees from existing process instances. Decision tree
classifiers are standard machine learning technique for supervised learning (i.e.,
concepts are learned from historical classifications, in our case dependency infor-
mation is learned from monitoring of previous process instances). Decision trees
follow a “divide and conquer” approach to learning concepts – they iteratively
construct a tree of decision nodes, each consisting of a test; leaf nodes typically
represent a classification to a category. In our case, only two categories exist
(KPI has been violated, or not). The process analyzer is flexible in the concrete
algorithm that is to be used to construct the decision tree (e.g., C4.5 [9], or
alternating decision tree [10]) and the parameterization (e.g., whether to use
pruning [11] or not). However, data preprocessing (i.e., the process of reformat-
ting raw process data in such a way that it can be fed into the machine learning
algorithm) is done automatically by the dashboard. For learning decision trees
we use 10-fold cross validation [8] to avoid having to split our historic process
data into training, test and validation sets, and to estimate the classification
error of the decision tree. The classification error allows the business analyst to
measure the quality of the dependency tree, i.e., how exact the tree represents
the actual structure of real-world dependencies.

4 Evaluation

In this section we describe our prototype implementation of the framework and
experimental results based on the case study.

4.1 Case Study Implementation

We have implemented the case study as presented in Section 2 using a Java-
based prototype. Many components of our solution are existing open source tools,
which we describe further below. For experimentation, we have deployed all these
components on a single desktop PC, mainly to prevent external influences such
as network latency to influence our experimentation results.

Process Engine We use Apache ODE3 as our business process execution engine.
ODE is open source software, and implements the WS-BPEL standard for Web
3 http://ode.apache.org/

service orchestration. One of the features of ODE is that it can trigger execution
events (e.g., ActivityExecStartEvent), which we use as process events as de-
scribed in Section 3. For hosting ODE we use the Apache Tomcat4 application
server. The eventing features of ODE demand for a JMS implementation to take
care of the transportation of events to subscribers. We chose to use the open
source message queue Apache ActiveMQ5, however, any other JMS implemen-
tation could be used as well.

Purchase Order Process The purchase order process has been implemented as a
WS-BPEL process which interacts with six Web services including the client of
the process. These Web services have been implemented in Java using Apache
CXF6 and simulate certain influential factors. One can, for example, configure
the response time, availability, and outputs of a service over time and dependant
on business process data.

Database Server The metrics database is implemented as a standard MySQL7

database. Because of the limited size of the case study we did not use advanced
features such as clustering or load balancing.

Monitoring Tool and Dashboard The Monitoring Tool for evaluation of PPMs has
been implemented in Java as described in [4]. We have additionally implemented
support for correlation of PPMs and QoS metrics. The Dashboard component
is implemented as an Eclipse-Plugin.

Process Analyzer The process analyzer is implemented as a standalone Web
service, which is accessible over a RESTful interface [12]. The foundation of
this component is the WEKA toolkit8. WEKA implements many high-quality
machine learning schemes, including the decision tree based classifiers that we
used in this paper. We have transparently integrated WEKA into our process
analyzer component using the WEKA Java API.

QoS Monitor For experimentation we have implemented a naive Quality of
Service monitor, which is able to non-intrusively check a limited number of
typical QoS metrics.

4.2 Experimental Results

The procedure of experimentation is as follows. We create a configuration which
simulates certain influential factors and define a set of potential influential met-
rics. We then execute the process a certain number of times (100, 400, and 1000

4 http://tomcat.apache.org/
5 http://activemq.apache.org/
6 http://cxf.apache.org/
7 http://www.mysql.com/
8 http://www.cs.waikato.ac.nz/ml/weka/

times) by triggering the process using a simulated client. During execution, the
process is monitored and metrics are saved in the metrics database. We then
perform dependency analysis of the KPI and compare the result of the gener-
ated dependency tree with our configured influential metrics. In the following
we present the results of two experimental runs. For both of them, we have used
the same configuration consisting of the KPI Order Fulfillment Lead Time and
a set of 31 potential influential factors (a subset is shown in Table 1).

For the first run, we have created a configuration which simulates the fol-
lowing factors: (i) the warehouse availability check (order in stock) returns a
negative result for certain product types based on certain probabilities; order in
stock is an important influential factor of the overall duration of the process as
it decides whether products have to be requested from suppliers which increases
the overall process duration substantially (ii) supplier 1 has in average a higher
than expected supplier delivery time; (iii) average shipment delivery time is high
in relation to the overall duration of the process instance. Based on this config-
uration, we expect the KPI to be mainly influenced by order in stock, product
type, supplier 1 delivery time, and shipment delivery time. Other metrics (in par-
ticular response times of services) also influence the KPI value but in a marginal
way.

Fig. 4. Generated Trees for (a) Order Fulfillment Time, (b) Order in Stock

The generated decision tree is shown in Figure 4a. It has been generated by
the J48 (the WEKA implementation of C4.5 [9]) based on 100 process instances.
The most influential factor is the shipment delivery time; if it is above 95 time
units all process instances lead to KPI violations (“red”), otherwise they depend
further on the order in stock metric and supplier 1 delivery time. The leaves of
the tree show the number of instances which are classified as “red” or “green”.

The dependecy tree shows three of the four influential factors we have con-
figured. Interestingly, the fourth factor, the product type, is not shown. One can
explain this result as follows: product type directly influences order in stock which
again influences the KPI value which is shown in the tree; as both metrics in-
fluence the KPI value in the same way, only one of them is shown in the tree.

This particular result is unsatisfactory, as it hides the root cause, namely product
type in this case. The user can deal with this problem using two approaches: (i)
he can drill down and request the analysis of the order in stock metric. A sec-
ond tree is generated which explains when ordered products are not in stock as
shown in Figure 4b. This tree now clearly shows how the unavailability depends
on product type and ordered product quantity. (ii) He can remove the order in
stock metric temporarily from the analyzed metric set. Now, the algorithm will
search for alternative metrics which classify the instances in a similar way as
order in stock. In that case, as shown in the experiments, the algorithm finds
and displays product type in the tree (not shown).

Instances Algorithm Leaves/ Displayed Metrics Correctly
Nodes Expected/All Classfied

100 J48 4/7 3/4 95,0 %

100 ADTree 11/16 2/4 98,0 %

400 J48 6/11 3/4 97,8 %

400 ADTree 17/26 4/5 99,0 %

1000 J48 11/18 3/6 98,8 %

1000 J48 -R 6/11 3/4 97,9 %

1000 J48 -U 13/22 4/9 99,2 %

1000 ADTree 19/28 3/6 99,4 %

Table 2. Experimental Results

Table 2 shows the more detailed results of the first experimental run. We
have experimented with two algorithms: J48 (based on C4.5 [9]) and ADTree
(alternating decision tree [10]). Both of them show very similar results concern-
ing the displayed influential metrics. Typically there is only one or at most two
(marginal) metrics which differ. For the same precision (correctly classified in-
stances in the training set, as shown in the last column), the algorithms also
generate trees of about the same size. The usage of parameters has lead to only
marginal changes in our experiments (for example, J48 -U with no pruning).
The only parameter that turned out useful in our experimentation was the “re-
duced error pruning” (J48 -R) [8] as it reduced the size of the tree, loosing
accuracy only marginally. This parameter is useful as the experiments show that
the tree is getting bigger (column ”Leaves/Nodes”) with the number of process
instances. For example, J48 generated for 400 instances a tree with 11 nodes,
for 1000 instances a tree with 18 nodes, while the precision improved only by 1
%. In particular, when the tree gets bigger, factors are shown in the tree which
have only marginal influence and thus make the tree less readable; column “Dis-
played Metrics” shows how many distinct metrics are displayed in the tree, the

first number thereby depiciting the number of expected metrics. In the case of
too many undesirable (marginal) metrics, one can try to improve the result by
simply removing those metrics from the analyzed metric set and repeating the
analysis. Finally, concerning the analysis duration, in our setting on a standard
laptop computer a decision tree generation based on 1000 instances takes about
30 seconds.

For the second run, we have created a configuration which, among others,
simulates QoS influential factors: (i) the warehouse Web service and the ship-
ment Web service are unavailable with the probability of 15%; the BPEL process
contains fault handlers when trying to invoke partner services; in case of unavail-
ability it waits for a certain time frame and retries; we have defined response
time metrics (measured based on process events) for each invoke-activity which
”include” the retries in case of unavailability (ii) the warehouse availability check
(order in stock) returns now a negative result only with the probability of 5%;
(iii) shipment delivery time is still very influential in relation to the duration of
other activities of the process. Based on this configuration, we expect the KPI to
be mainly influenced by the availability of warehouse Web service and shipment
Web service, order in stock, and shipment delivery time.

Fig. 5. Generated Trees for (a) All Factors, (b) Availability of IT Infrastructure

The generated decision tree is shown in Figure 5a. It is a J48 tree based
on 1000 instances using reduced error pruning. The tree shows the response
time warehouse, delivery time shipment, and order in stock as the main influ-
ential factors. Completely missing, however, are the expected dependencies on
the availability of the warehouse Web service and the shipment Web service. We
suspect that availability of warehouse Web service is hidden by response time
warehouse, which could be analyzed by drilling down. However, we take now
another approach and perform an analysis of the KPI only in relation to avail-
ability metrics of all services involved in the process, i.e. we remove all other
metrics from the analyzed metric set. Effectively, we analyze the impact of avail-

ability on the KPI. The result is shown in Figure 5b. It clearly shows that (only)
availability of the shipment and warehouse Web services have an impact on the
KPI value, as expected.

Overall, we can draw following conclusions from the experiments. In general,
the generated trees show the expected influential metrics in a satisfactory man-
ner. Concerning the influential factors displayed in the tree, we have identified
two problems: (i) as the tree gets bigger it contains often more metrics than ex-
pected, i.e. metrics which have only marginal influence and thus only “blur the
picture”; in that case one can try to tune the algorithm by using, for example,
reduced error pruning, or one can simply remove those metrics from the analyzed
metric set and repeat the analysis; both techniques lead to more satisfactory re-
sults; (ii) the tree does not show some of the expected metrics: we have shown
that this is often the case when there are “multi-level” dependencies between
metrics; in that case further analysis (drill down) of lower-level metrics may help
to find further influential factors. Note, however, that drill down functionality
assumes that the metric which is to be analyzed has a target value assigned.

5 Related Work

There are several approaches that deal with monitoring of service compositions.
They differ mostly in monitoring goals, i.e., what is monitored, and the moni-
toring mechanisms. IBM’s approach integrates performance management tightly
into the business process lifecycle and supports it through its WebSphere family
of products [13]. Thereby, process metrics are modeled and monitored based on
events published by the Process Server BPEL engine. Schiefer et al. [14] extend
a WS-BPEL process definition with auditing activities in order to publish state
changes by invoking operations on the monitoring tool. Our approach is simi-
lar to IBM’s approach in that we use process events published by the process
engine. We, however, also support monitoring of QoS metrics. Additionally, au-
tomated dependency analysis is not dealt with by the IBM solution. Baresi et
al. [15] deal with monitoring of WS-BPEL processes focusing on runtime vali-
dation. The goal is thereby not to monitor process performance metrics, but to
detect partner services which deliver unexpected results concerning functional
expectations. Traverso et al. [16] describe a monitoring approach for WS-BPEL
processes which supports run-time checking of assumptions under which the
partner services are supposed to participate in the process and the conditions
that the process is expected to satisfy. The approach supports also collecting
statistical and timing information. All of these approaches have in common that
they concentrate on monitoring of WS-BPEL processes only. In particular, they
do not deal with QoS metrics integration and dependency analysis.

When it comes to the analysis aspect, most closely related to our work is
iBOM, a platform for business operation management developed by HP [17,
18], as it supports both process monitoring, and analysis and prediction based
on data mining. In [17] the authors give an overview and a classification of
which data mining techniques are suitable for which analysis and prediction

techniques. Thereby, also decision trees are mentioned which we concentrate on
in our approach. In [18], the iBOM platform is presented which allows users
to define and monitor business metrics (not focused on WS-BPEL processes),
perform intelligent analysis on them to understand causes of undesired metric
values, and predict future values. Our approach is different in that we focus on
SOA-based WS-BPEL processes, and explicitly integrate PPMs and QoS metrics
for analysis purposes. We deal only with decision trees, but provide detailed
experimental results. Another popular approach to process analysis is process
mining. Process mining techniques operate on event logs provided by information
systems and perform different kinds of analysis on them, in particular process
discovery when there is no explicit process model a priori [19]. In our approach,
we also operate on monitored “metric logs” during analysis phase, but focus on
mining of metric dependencies using decision tree algorithms.

6 Conclusions and Future Work

In this paper we have presented a framework that performs monitoring of both
PPMs and QoS metrics of business processes runnning on top of a Service-
Oriented Architecture. Besides providing up-to-date dashboard information about
the current process performance, the main goal of our framework is to enable
what we refer to as dependency analysis, i.e., an analysis of the main factors
that influence the business process and make it violate its performance targets.
The result of this analysis is represented as a decision tree. We have presented
experimental results which show that in general the generated decision trees pro-
vide explanations in a satisfactory manner, but in some cases further analysis
has to be done. In that respect, we have shown how drill-down functionality and
analyis based on different metric sets can influence the analysis result.

Our future work includes extending the framework presented here into various
directions. Firstly, we plan to work on the runtime prediction of the outcome of
process instances (i.e., whether the KPI is going to be violated or not) while they
are still running. Basically, we can us the same techniques as for dependency
analysis (however, we will in addition use regression trees). Secondly, we are
working towards making use of the dependency analysis in the area of process
adaptation – currently, dependencies are presented towards the human business
analyst, who is then incorporating the gained knowledge back into the process,
e.g., by exchanging service bindings. We currently think about a more automated
feedback mechanism, which uses rule sets and predefined reactions to incorporate
dependency knowledge back into the WS-BPEL process in a (semi-)automated
way. One example would be service selection: if the dependency model of a
process shows that the process outcome is sensitive to the response time of a
service, then an expensive high-quality service is selected; if the response time
is no important factor of influence a cheaper service is selected.

References

1. Weske, M.: Business Process Management: Concepts, Languages, Architectures.
Springer-Verlag New York, Inc., Secaucus, NJ, USA (2007)

2. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-Oriented Com-
puting: State of the Art and Research Challenges. IEEE Computer 11 (2007)

3. Jeng, J.J., Schiefer, J., Chang, H.: An Agent-based Architecture for Analyzing
Business Processes of Real-Time Enterprises. In: Proceedings of the 7th Inter-
national Conference on Enterprise Distributed Object Computing (EDOC ’03),
Washington, DC, USA, IEEE Computer Society (2003) 86

4. Wetzstein, B., Strauch, S., Majdik, P., Leymann, F.: Modeling and Monitoring
Process Performance Metrics of BPEL Processes. Technical Report 2008/05, Uni-
versity of Stuttgart, Germany (2008)

5. Council, S.: Supply Chain Operations Reference Model Version 7.0 (2005)
6. Rosenberg, F., Platzer, C., Dustdar, S.: Bootstrapping Performance and Depend-

ability Attributes ofWeb Services. In: Proceedings of the IEEE International Con-
ference on Web Services (ICWS ’06), Washington, DC, USA, IEEE Computer
Society (2006) 205–212

7. Luckham, D.: The Power of Events: An Introduction to Complex Event Processing
in Distributed Enterprise Systems. Addison-Wesley Professional (2002)

8. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques. 2 edn. Morgan Kaufmann (2005)

9. J. R. Quinlan: C4.5: Programs for Machine Learning. Morgan-Kaufmann (1993)
10. Freund, Y., Mason, L.: The Alternating Decision Tree Learning Algorithm. In:

Proceedings of the 16th International Conference on Machine Learning (ICML
’99), San Francisco, CA, USA, Morgan Kaufmann Publishers Inc. (1999) 124–133

11. Mingers, J.: An Empirical Comparison of Pruning Methods for Decision Tree
Induction. Machine Learning 4(2) (1989) 227–243

12. Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine, CA (2000)

13. Wahli, U., Avula, V., Macleod, H., Saeed, M., Vinther., A.: Business Process
Management: Modeling Through Monitoring Using WebSphere V6.0.2 Products.
IBM, International Technical Support Organization (2007)

14. Roth, H., Schiefer, J., Schatten., A.: Probing and Monitoring of WSBPEL Pro-
cesses with Web Services. Proceedings of the The 8th IEEE International Confer-
ence on E-Commerce Technology (CEC-EEE’06) (2006)

15. Baresi, L., Guinea, S.: Towards Dynamic Monitoring of WS-BPEL Processes. In:
Proceedings of the 3rd International Conference of Service-Oriented Computing
(ICSOC’05), Springer (2005) 269–282

16. Barbon, F., Traverso, P., Pistore, M., Trainotti, M.: Run-Time Monitoring of
Instances and Classes of Web Service Compositions. In: Proceedings of the IEEE
International Conference on Web Services(ICWS’06). (2006) 63–71

17. Castellanos, M., Casati, F., Dayal, U., Shan, M.C.: A Comprehensive and Auto-
mated Approach to Intelligent Business Processes Execution Analysis. Distributed
and Parallel Databases 16(3) (2004) 239–273

18. Castellanos, M., Casati, F., Shan, M.C., Dayal, U.: iBOM: A Platform for Intel-
ligent Business Operation Management. In: Proceedings of the 21st International
Conference on Data Engineering (ICDE’05). (2005) 1084–1095

19. van der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: Discovering pro-
cess models from event logs. IEEE Trans. on Knowl. and Data Eng. 16(9) (2004)
1128–1142

CD – JRA – 2.2.2

Paper [2]

Rosenberg F., Michlmayr A., Dustdar S.:

Top-down business process development and execution
using quality of service aspects

In: Enterprise Information Systems, Vol. 2(4):459-475, Taylor
& Francis, 2008.

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by: [Rosenberg, Florian]
On: 24 November 2008
Access details: Access Details: [subscription number 904758859]
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

Enterprise Information Systems
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t748254467

Top-down business process development and execution using quality of
service aspects
Florian Rosenberg a; Anton Michlmayr a; Schahram Dustdar a

a Distributed Systems Group, Technical University of Vienna, Vienna, Austria

Online Publication Date: 01 November 2008

To cite this Article Rosenberg, Florian, Michlmayr, Anton and Dustdar, Schahram(2008)'Top-down business process development and
execution using quality of service aspects',Enterprise Information Systems,2:4,459 — 475

To link to this Article: DOI: 10.1080/17517570802395626

URL: http://dx.doi.org/10.1080/17517570802395626

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t748254467
http://dx.doi.org/10.1080/17517570802395626
http://www.informaworld.com/terms-and-conditions-of-access.pdf

Top-down business process development and execution

using quality of service aspects

Florian Rosenberg*, Anton Michlmayr and Schahram Dustdar

Distributed Systems Group, Technical University of Vienna, Vienna, Austria

(Received 27 January 2008; final version received 7 August 2008)

Developing cross-organisational business processes is a challenging task. The partners
have to agree on a common data format and meaning as well as on the quality of service
(QoS) requirements each partner has to fulfil. The QoS requirements are typically
described using service level agreements (SLAs) among the partners. In this paper, a
top-down modelling approach for Web service based business processes is proposed to
capture the functional and non-functional aspects using a choreography language (WS-
CDL) which describes the message interactions among the participants. The
choreography is annotated with SLAs for the different partners. For each partner in
the process, an orchestration (in WS-BPEL) and the necessary Web service templates
are automatically generated. The service level objectives (SLOs) from the partner SLAs
are automatically translated into policies that can then be enforced by a BPEL engine
during execution. The deployment of the WSDL files, the monitoring of QoS attributes
and the execution of the BPEL process itself are then handled by the VRESCo SOA
runtime.

Keywords: quality of service; top-down modelling; business process development; service
level agreements; WS-CDL; WS-BPEL

1. Introduction

Service-oriented architecture (SOA) represents an emerging paradigm to develop flexible
and large-scale software systems using the Internet as the main infrastructure. Web
services are one realisation of this paradigm by using well-established standards to
describe and interact with other services.1

Many organisations are building their cross-organisational business processes based on
Web services because of their platform-agnostic nature and the ease of integration.
Currently available technologies such as composition engines using the Web Service
Business Process Execution Language (WS-BPEL, or BPEL for short; see Alves et al.
2007) can be used to orchestrate business processes within an organisation.

An engineering method for Web service based business processes involving multiple
partners requires agreement on the data exchanged that cannot be achieved using BPEL.
For this purpose, the Web Service Choreography Description Language (WS-CDL; see
Kavantzas et al. 2008) provides an XML-based language to describe the cross-
organisational message exchanges from a global viewpoint. The different views (local
versus global) are described by the terms choreography and orchestration. Choreography

*Corresponding author. Email: florian@infosys.tuwien.ac.at

Enterprise Information Systems

Vol. 2, No. 4, November 2008, 459–475

ISSN 1751-7575 print/ISSN 1751-7583 online

� 2008 Taylor & Francis

DOI: 10.1080/17517570802395626

http://www.informaworld.com

D
o
w
n
l
o
a
d
e
d

B
y
:

[
R
o
s
e
n
b
e
r
g
,

F
l
o
r
i
a
n
]

A
t
:

1
0
:
2
8

2
4

N
o
v
e
m
b
e
r

2
0
0
8

can be defined as ‘processes involving multiple services where the interactions between
these services are seen from a global perspective’ (Kavantzas et al. 2008). A choreography
does not describe any internal actions that occur within a participating service, such as
internal computation or data transformation, but rather focuses on the observable public
exchange of messages. In contrast to that, Peltz (2003) defines orchestration as an
‘executable business process that can interact with both internal and external Web services.
The interactions occur at the message level. They include business logic and task execution
order, and they can span applications and organisations to define a long-lived,
transactional, multistep process model’.

These two concepts imply that such a choreographic description can be used to
generate the orchestration behaviour (e.g. in the form of BPEL stubs) and the necessary
WSDL templates automatically. Nowadays, service level guarantees and obligations
among the service providers are becoming increasingly important as a means to capture
runtime quality requirements and guarantees for a partner’s service (such as response time,
availability and security). Such quality of service (QoS) requirements are generally
specified in a service level agreement (SLA) and need to be fulfilled during the service
execution among the partners. Using existing Web service standards and proposals there is
currently no integrated modelling method available to build such cross-organisational
business processes considering SLA requirements as first-class citizens from the starting
point of the development process. Additionally, the orchestration parts and the WSDL
files for each partner in the choreography should be automatically generated.

In this paper, we propose a top-down modelling approach to build such QoS-aware,
Web service based business processes using currently available technologies such as
WS-CDL and BPEL. It leverages a design approach for efficient development of cross-
organisational business processes similar to the idea of model-driven software development
(Völter and Stahl 2006). The novelty of our approach is twofold: (1) a relevance mapping
fromWS-CDL to BPEL and (2) the consideration of SLA requirements from the beginning
of the choreography development process. These SLA requirements are then automatically
transformed and mapped to a WS-QoS policy and attached to the BPEL process of the
affected partner allowing policy-aware middleware to check and enforce the SLA.

This paper is organised as follows. Section 2 describes the case study we implemented
for evaluating the concepts of this work. Section 3 describes our main approach for
realising QoS-aware business process development. The implementation of this approach
is sketched in Section 4 followed by an evaluation in Section 5. Section 6 positions our
approach among existing work and, finally, Section 7 concludes the paper.

2. Case study

In this case study we developed a build-to-order (BTO) scenario in the B2B area. The use
case consists of a customer, a manufacturer, and suppliers for CPUs, main boards and
hard disks. The manufacturer offers assembled IT hardware equipment to its customers.
For this purpose the manufacturer has implemented a BTO business model. It holds a
certain part of the individual hardware components in stock and orders missing
components if necessary. In the implemented BTO scenario, the customer sends a quote
request with details about the required hardware equipment to the manufacturer. The
latter sends a quote response back to the customer. As long as customer and manufacturer
do not agree on the quote, this process will be repeated. If a mutual agreement is achieved,
the customer sends a purchase order to the manufacturer. Depending on its hardware
stock the manufacturer has to order the required hardware components from its suppliers.

460 F. Rosenberg et al.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
R
o
s
e
n
b
e
r
g
,

F
l
o
r
i
a
n
]

A
t
:

1
0
:
2
8

2
4

N
o
v
e
m
b
e
r

2
0
0
8

If the manufacturer needs to obtain hardware components to fulfil the purchase order, an
appropriate hardware order is sent to the respective supplier. In turn the supplier sends a
hardware order response to the manufacturer. Finally, the manufacturer sends a purchase
order response back to the customer.

The interactions of the participants in our BTO scenario2 are illustrated in the
collaboration sequence diagram shown in Figure 1. The BTO scenario consists of six
different Web service invocations which correspond to the following SOAP operations:
requestForQuote, updateQuote, sendPurchaseOrder, orderCPU, orderMB,
orderHD. Each SOAP operation depicts a synchronous message request-reply scenario
which will be illustrated as an exemplar for the requestForQuote operation. The
customer invokes the operation requestForQuote on the service interface of the
manufacturer sending the QuoteRequest message. The manufacturer receives the
message request and replies to the service invocation by returning the QuoteResponse
message. Contrary to this, an asynchronous message scenario would require additional
callback operations on the service requestor side. In this case the manufacturer invokes an
operation requestForQuoteCallback on the service interface of the customer to send
back the QuoteResponse.

The definition of SLA and QoS plays a crucial rule in cross-organisational business
processes. Each participant offers services to other partners over the Internet which the
latter need to run their businesses. Therefore, a certain degree of reliability concerning
response time, throughput, uptime, etc. is desired and has to be specified and explicitly
expressed from the beginning of the modelling phase. In our scenario we distinguish four
different relationships between the choreography participants. The customer interacts with

Figure 1. BTO case study.

Enterprise Information Systems 461

D
o
w
n
l
o
a
d
e
d

B
y
:

[
R
o
s
e
n
b
e
r
g
,

F
l
o
r
i
a
n
]

A
t
:

1
0
:
2
8

2
4

N
o
v
e
m
b
e
r

2
0
0
8

the manufacturer; the manufacturer interacts with different suppliers. For each relation-
ship an SLA is defined between the partners to regulate this degree the partners need for
their business.

3. Top-down modelling approach

In this section, we describe our top-down modelling approach and the QoS integration.
Due to space restrictions, we cannot describe WS-BPEL (Alves et al. 2007), WS-CDL
(Kavantzas et al. 2008) and WS-Policy (Vedamuthu et al. 2008a) and therefore assume
basic familiarity with the concepts and their syntax. For a short overview of these
technologies, see Rosenberg et al. (2007).

3.1. Overview

As shown in Figure 2, the language constructs of WS-CDL can be mapped to BPEL
allowing a choreographic description to be transformed into separate BPEL processes, one
for each partner in the choreography, including corresponding WSDL descriptions.

Our approach consists of two main steps which are highlighted in this figure. In the
first step, a number of models are defined at the highest level of abstraction (the
choreography layer). On the one hand, this contains the WS-CDL document specifying
the choreography in detail (Step 1a). The choreography is used to describe the partners in
the process and the message exchanges. On the other hand, the SLAs between the
participants are defined (Step 1b) which describe obligations and guarantees among
the participants. The choreography is annotated with the SLA references to allow a
pairwise agreement between two partners on a specific SLA. Furthermore, SLAs may also
include QoS attributes as described in more detail below.

Figure 2. Modelling approach.

462 F. Rosenberg et al.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
R
o
s
e
n
b
e
r
g
,

F
l
o
r
i
a
n
]

A
t
:

1
0
:
2
8

2
4

N
o
v
e
m
b
e
r

2
0
0
8

In the second step, the documents defined in the first step are transformed from the
choreography layer into executable code in the orchestration layer. First, the WS-CDL
choreography is mapped into a number of BPEL processes depending on the number of
participants (Step 2a). Secondly, the WS-CDL document is used to generate WSDL
descriptions of those Web services, which each participant has to implement and provide
to its business partners (Step 2b). The details of mapping WS-CDL to BPEL and WSDL
are described in Section 3.2.

The importance of QoS in cross-organisational business processes makes it necessary
to consider these aspects from the beginning of the development process. Therefore, the
SLAs are transformed to WS-QoSPolicy statements, which is our extension to WS-Policy,
that are directly attached to the corresponding partner links in BPEL (Step 2c). The details
of this transformation step, the integration of QoS and WS-QoSPolicy are given in
Section 3.3.

3.2. Mapping WS-CDL to BPEL and WSDL

The main goal of transforming WS-CDL to BPEL is to allow the participants a rapid
modelling and development process and generate relevant BPEL and WSDL documents
which can then be used as a basis to implement the private (non-visible) business logic. The
projection of such a global description to endpoint processes whose interactions precisely
realise the global description is called endpoint projection (Carbone et al. 2007).

Mendling and Hafner (2007) define basic mapping rules fromWS-CDL to BPEL. They
use a recursive XSLT-based approach to generate the BPEL processes by iterating through
each role type to check the relevance of the node. The authors consider a node as relevant
if it contains activities with the attribute toRoleTypeRef and fromRoleTypeRef.
However, this approach does not correspond with the endpoint projection definition given
above, because more structured BPEL elements are generated than necessary. This is due
to the fact that all parent nodes are considered during the mapping process even if they are
not directly relevant (it can be considered as a simple 1:1 mapping). Listing 1 depicts an

Listing 1. Choreography example.

Enterprise Information Systems 463

D
o
w
n
l
o
a
d
e
d

B
y
:

[
R
o
s
e
n
b
e
r
g
,

F
l
o
r
i
a
n
]

A
t
:

1
0
:
2
8

2
4

N
o
v
e
m
b
e
r

2
0
0
8

example of this problem by using three nested sequence elements. In this example, their
approach generates three nested BPEL sequence activities, although only the inner
sequence (Lines 7–22) is relevant for the Customer and Manufacturer as they are
referenced in the fromRoleTypeRef and toRoleTypeRef, respectively.

Therefore, we have adapted the rules from Mendling and Hafner (2007) and propose
an extended endpoint projection mechanism based on a so-called relevance mapping. The
basic idea is to map only those WS-CDL elements which are relevant in the BPEL process.
To map the different ordering structures we need to distinguish between child and
descendant relevance. The former describes that a relevant basic activity occurs as an
immediate child of the respective ordering structure in the tree, whereas the latter describes
that a relevant basic activity is nested at an arbitrary level. The relevance of a WS-CDL
basic activity is determined by the occurrence of interaction, assign or
silentAction where the roleType attribute is matching the roleType of the
corresponding participant in the choreography.

If a node represents a relevant activity as described above, it is mapped to a BPEL
activity according to Table 1, otherwise no mapping is generated. The basic algorithm for
the relevance mapping is depicted in Listing 2. This algorithm takes a valid WS-CDL
document as input and produces a number of BPEL documents, depending on the number
of role types. For each role type at least one BPEL document is generated. We assume that
a WS-CDL file is correct when it fulfils a number of properties, e.g. deadlock-free and
livelock-free (Lohmann et al. 2007).

From Lines 2 to 7, we generate a BPEL process for each roleType found in the
choreography. The algorithm inspects the choreography tag of the WS-CDL
document by iterating each activity. If the activity type is an ordering structure or
workunit a relevance mapping is performed (Lines 11–22). If the currently inspected
activity is descendant relevant we must consider all child nodes of this activity
(Line 12). If an activity is child relevant (Line 16), we generate the corresponding BPEL
mapping according to Table 1 (Line 17). Otherwise, we recursively visit all child nodes
(Line 19).

For our BPEL mapping we implemented an additional optimisation concerning the
ordering structures. If a parallel or sequence ordering structure contains only one
basic child activity, this ordering structure is ignored in the BPEL mapping (Lines 13–14).
For instance, considering the example from Listing 1, only one BPEL sequence activity
will be generated.

In Table 1 we have depicted a detailed overview of the WS-CDL to BPEL mapping
rules. These rules are based on the mappings proposed by Mendling and Hafner (2007)
and adapted where necessary. The adaption mainly includes interaction and choice.
For the interaction activity and choice ordering structure, we also have to consider
the role types to determine the sending and receiving party. Additionally, we address the
synchronous and asynchronous message exchange patterns properly in the interaction
activity.

Besides generating the BPEL artefacts, we also need to generate the WSDL artefacts
from theWS-CDL description. The latter defines the static structure which can be extracted
without analysing the choreography flow in detail. We generate a newWSDL document for
each roleType of the choreography if the service interface is invoked somewhere in the
choreography flow. The main idea is to check if the roleType is referenced within a
channelType and a variable for this channelType exists that is used in an
interaction with another partner. If this is the case, the roleType is in use and a
WSDL needs to be generated. The WS-CDL to WSDL mapping is summarised in Table 2.

464 F. Rosenberg et al.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
R
o
s
e
n
b
e
r
g
,

F
l
o
r
i
a
n
]

A
t
:

1
0
:
2
8

2
4

N
o
v
e
m
b
e
r

2
0
0
8

For a detailed description of the WS-CDL to WSDL mapping algorithm, refer to
Rosenberg et al. (2007).

3.3. SLA/QoS integration

The integration of QoS attributes in business process development raises the need for
appropriate techniques to consider QoS at the choreography and orchestration layer.
Considering QoS at the choreography layer can be achieved by using SLAs which focus on
performance and dependability aspects of the underlying QoS model. In contrast, the
integration of QoS at the orchestration layer can be attained by the use of Web service
policies. This section describes how WS-CDL and BPEL can be extended to support QoS
attributes.

Table 1. WS-CDL to BPEL mapping.

WS-CDL BPEL Semantics

Activities

workunit (nested in choice) case Repeat and block attributes always false
workunit (block ¼ true) (receive) Concept of blocking condition not defined

in BPEL (Barros et al. 2005)
workunit (all other cases) while repeat¼ true and block¼ false
sequence sequence Sequential execution of activity units
parallel flow Parallel execution of activities

choice switch If inspected roleType is referenced in the
guard condition of the inner workunit

onMessage (nested in)
pick

If inspected roleType is not referenced in
the guard condition of the inner workunit
but referenced in an interaction
activity

interaction
action ¼ request invoke fromRoleType attribute corresponds to

inspected role type
action ¼ request receive toRoleType attribute corresponds to

inspected role type. If interaction
inside workunit which is defined inside
a choice generate a BPEL onMessage

action ¼ response reply toRoleType attribute corresponds to
inspected role type

action ¼ response receive receive only in the asynchronous case.
For synchronous interaction append
outputVariable to corresponding
BPEL invoke which is defined in case 1

perform no mapping Perform separately defined choreography
assign assign (for party in role

type)
Variable assignment

silentAction sequence with nested
empty

To be refined in the BPEL process

noAction empty (for party in
role type)

Do nothing

finalise compensationHandler Finalising activities after completion

Enterprise Information Systems 465

D
o
w
n
l
o
a
d
e
d

B
y
:

[
R
o
s
e
n
b
e
r
g
,

F
l
o
r
i
a
n
]

A
t
:

1
0
:
2
8

2
4

N
o
v
e
m
b
e
r

2
0
0
8

3.3.1. SLA integration

As mentioned above, we use SLAs to integrate QoS at the choreography layer. For the
definition of the SLAs we decided to use WSLA (Ludwig et al. 2008). For the actual
integration, we extended WS-CDL with a construct which holds SLA references. We
therefore leverage semantic annotations in WS-CDL constructs using the description
element as shown in Listing 3 (Lines 3–7).

Listing 2. Relevance mapping.

Table 2. WS-CDL to WSDL mapping.

WSDL WS-CDL

Element Attribute Element Attribute

definitions xmlns:tns package xmlns:tns
targetNS targetNS
name behaviour name

message name exchange informationType

portType name behaviour interface
operation name interaction operation
[input j j output] name exchange action

message informationType

binding name behaviour name þ ‘Binding’
type ‘tns:’ þ interfaceþ‘Binding’

operation name interaction operation
soap:operation soapAction behaviour interface namespace þ operation

interaction
input soap:body namespace behaviour interface namespace
output soap:body namespace behaviour interface namespace

service name behaviour interface þ ‘Service’
port name behaviour interface þ ‘Port’

binding ‘tns:’ þ name þ ‘Binding’

466 F. Rosenberg et al.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
R
o
s
e
n
b
e
r
g
,

F
l
o
r
i
a
n
]

A
t
:

1
0
:
2
8

2
4

N
o
v
e
m
b
e
r

2
0
0
8

3.3.2. WS-QoS policy

In order to bring QoS aspects from the choreography to the orchestration layer, SLAs
have to be mapped to the corresponding Web service policies to allow monitoring and
enforcement of QoS attributes at the execution layer. However, the current WS-Policy
specification focuses on security (WS-SecurityPolicy) and reliable messaging (WS-
RMPolicy), whereas performance and dependability are not addressed. The WS-Policy
framework provides a grammar for the definition of domain-specific policies. Hence, we
use this feature to extend the WS-Policy framework by defining a WS-QoSPolicy. In our
approach, the mapping from SLA to WS-QoSPolicy and its attachment to BPEL is done
automatically, whereas other policy types (such as security and reliable messaging) are
currently not supported by the mapping. Nevertheless, these can be manually attached to
the BPEL documents as described in Charfi et al. (2007).

Before we go into the details of our mapping between SLAs and policies, we briefly
sketch the underlying QoS model. Rosenberg et al. (2006) have defined a QoS model for
Web services by identifying different QoS attributes. Since some attributes are either
dependent on external factors or derived from empirical values, not all attributes are
determinable in advance. In this work, we consider Processing Time, Execution Time,
Throughput and Availability as possible QoS attributes in the WS-QoSPolicy. However,
guarantees on the Execution Time will usually be defined in SLAs instead of Processing
Time because the first also includes the network latency, which partly depends on the
client’s network connection.

The WS-QoSPolicy defines assertions for these QoS attributes. The normative outline
of the assertions is shown in Listing 4. It defines type, unit, predicate and value of
the assertion.

A concrete example for two such policy assertions is illustrated in Listing 5. Lines 3–4
define an assertion on the execution time, which has to be less than five seconds. Lines 5–6
state that the throughput has to be more than 100 requests per second.

3.3.3. SLA/QoS mapping

Our extension of the WSLA schema restricts the SLA parameters to the pre-defined QoS
attributes introduced in the previous section. Therefore, the SLA can be directly mapped

Listing 3. SLA integration in WS-CDL.

Listing 4. WS-QoSPolicy assertions.

Enterprise Information Systems 467

D
o
w
n
l
o
a
d
e
d

B
y
:

[
R
o
s
e
n
b
e
r
g
,

F
l
o
r
i
a
n
]

A
t
:

1
0
:
2
8

2
4

N
o
v
e
m
b
e
r

2
0
0
8

to the WS-QoSPolicy, which consists of the following two steps: first, each SLA is mapped
to a policy and, secondly, each SLA parameter is mapped to a policy assertion.

As each SLA may consist of one or more SLOs, we identified three patterns:

(1) One SLO is defined for each SLA parameter.
(2) One SLO consists of multiple SLA parameters.
(3) SLA parameters are defined in multiple SLOs.

Each of these patterns can be successfully mapped to an equivalent policy. In the first
case, one All operator is used to contain all policy assertions. For each SLO, exactly one
policy assertion will be generated. For example, an SLO SLOServiceExecutionTime
defines an SLA parameter which corresponds to the type ExecutionTime. This
parameter will be mapped to the corresponding policy assertion according to the WS-
QoSPolicy.

In the second case, SLA parameters are grouped by an SLO using the logical operators
And, Or, Not, Implies. Table 3 shows how these constructs can be mapped to
equivalent WS-QoSPolicy operators. For example, such groupings of SLA parameters can
be used to define an SLO SLOServicePerformance by combining Throughput and
ExecutionTime in various ways using the provided logical operators.

In the third case, for each SLO a time period has to be specified. Therefore, it is
possible to define multiple SLOs for different time periods. For instance, during peak-
hours the execution time of a service has to be less than a specific value.

3.3.4. WS-QoS policy integration

The definition of a QoS policy and QoS/SLA mapping rules are the fundamental concepts
for considering QoS in Web service based business process development. Yet the question
remains of how to integrate the generated QoS policies in the orchestration layer.
Regarding the top-down modelling approach of Web services, two integration approaches
can be differentiated: policies can either be attached to service descriptions (WSDL) or be
integrated in BPEL processes.

Table 3. SLA operator mapping.

SLA operator WS-QoSPolicy operator

And ! All
Or ! ExactlyOne
Not ! Reverse predicate
Implies ! ExactlyOne and reverse predicate

Listing 5. Assertion example.

468 F. Rosenberg et al.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
R
o
s
e
n
b
e
r
g
,

F
l
o
r
i
a
n
]

A
t
:

1
0
:
2
8

2
4

N
o
v
e
m
b
e
r

2
0
0
8

Attaching policies to WSDL descriptions following the WS-PolicyAttachment
(Vedamuthu et al. 2008b) specification has two main drawbacks. First, service
invocations are always subject to a policy, even if the service consumer has no
corresponding SLA. Secondly, the service provider cannot differ between multiple policies
for the same service since policies do not contain information about the participating
parties. Therefore, following the second approach, the policies should be integrated in
BPEL processes.

Extensibility in BPEL is achieved by allowing elements from other namespaces.
The BPEL partnerLink element is the place to integrate the policy. For this
integration, both synchronous (request-reply) and asynchronous (callback) message
exchange patterns have to be considered. In contrast to the asynchronous case, in the
synchronous case the service provider has no additional information about the service
consumer, because the partnerLink has no service consumer-specific details. Therefore,
the policy has to be integrated at the service consumer side as illustrated in Listing 6
(Lines 5–8).

Listing 6. Policy integration in BPEL.

Figure 3. System architecture.

Enterprise Information Systems 469

D
o
w
n
l
o
a
d
e
d

B
y
:

[
R
o
s
e
n
b
e
r
g
,

F
l
o
r
i
a
n
]

A
t
:

1
0
:
2
8

2
4

N
o
v
e
m
b
e
r

2
0
0
8

4. Architecture and implementation

The concepts and algorithms described in Section 3 have been implemented in Java using a
simple Swing-based graphical user interface. The architecture of this system consists of
four parts, which are depicted in Figure 3. We distinguish between the modelling and the
execution phases. The modelling phase consists of editing choreographies and SLAs,
transforming WS-CDL into BPEL and SLAs into policy assertions, and finally generating
the WSDL artefacts. After implementing the private business logic in the BPEL artefacts
and the corresponding services, they can be deployed in the VRESCo runtime as part of
the execution phase.

4.1. Modelling phase

Editing choreographies in our approach is done in two steps: first, the choreography is
modelled using the Pi4soa Eclipse plugin (pi4 Technologies Foundation 2008). This plugin
provides a graphical tooling for creating complex choreographies. Secondly, our simple
Swing-based SLA annotation tool is used to add SLA references to specific role types.
Furthermore, the editor initiates the generation of WSDL and BPEL artefacts as described
above.

The Transformation component implements the algorithms for transforming WS-CDL
to BPEL, and SLA to policies. The WS-CDL to BPEL transformation is implemented
using the DOM4J API whereas the SLA transformation is implemented using XSLT.
During the transformation step one BPEL document is generated for each partner
including the policy references which conform to the SLAs in the choreography layer.

The Generation component is responsible for generating the WSDL files from a
choreography according to the algorithm described in Section 3. This component is also
implemented using XSLT stylesheets.

4.2. Execution phase

The VRESCo runtime introduced in Michlmayr et al. (2007) aims at addressing some of
the current challenges in service-oriented computing research and practice (Papazoglou
et al. 2007). Among others, this includes topics related to service discovery and metadata,
dynamic binding and invocation, service monitoring, QoS-aware service composition,
service management and versioning (Leitner et al. 2008), and service notifications
(Michlmayr et al. 2008). Besides this, another goal of the VRESCo project is to facilitate
the engineering of service-oriented applications by reconciling some of these topics and
abstracting from protocol related issues.

The VRESCo core services illustrated on the right-hand side of Figure 3 are
responsible for publishing and querying services and associated metadata in the registry
database. After generating the services in the modelling phase, the VRESCo publishing
service is used to make these services available to the runtime.

The QoS monitor introduced in Rosenberg et al. (2006) is responsible for measuring
the performance and dependability attributes of Web services. This monitor is integrated
as part of the VRESCo runtime to measure the QoS attributes of the services published in
the registry database. These QoS attributes are then used to monitor compliance with the
SLA defined for the choreographies.

The BPEL processes generated in the modelling phase are finally executed using the
Windows Workflow Foundation (WWF) that runs on top of the Microsoft .NET platform

470 F. Rosenberg et al.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
R
o
s
e
n
b
e
r
g
,

F
l
o
r
i
a
n
]

A
t
:

1
0
:
2
8

2
4

N
o
v
e
m
b
e
r

2
0
0
8

and provides support for executing BPEL compliant processes. WWF is integrated into
VRESCo as part of its composition support.

5. Validation and discussion

In this section, we validate our work using the case study described in Section 2 to
demonstrate the feasibility of our approach. Additionally, we discuss the lessons learned
during the validation and describe the limitations of our approach.

5.1. Validation

For modelling the choreography we have used the Pi4soa Eclipse Plugin. During the
modelling phase, the main part is to identify the partners in the process and the messages
that are exchanged among the partners. Most parts of the BTO scenario are implemented
in the choreography itself. However, some non-observable implementation-specific details
cannot be considered from a choreography point of view but have to be implemented
internally by the choreography participants.

The choreography itself is then used to generate the BPEL and WSDL templates for
each partner in the choreography. The SLAs are modelled pairwise and independently
among the partners. The partners agree on a set of runtime constraints that need to hold
during the message interactions. In general, the SLAs are independent of the choreography
itself; nevertheless, the integration of an SLA in the development process can be achieved
by adding an SLA reference to a specific roleType in the WS-CDL (compare Listing 3
for an integration example).

In our case study we have identified four different SLAs: one between the customer and
the manufacturer, and one for every manufacturer–supplier pair. For example, an SLA
between the manufacturer and the CPU supplier specifies the expected response time,
throughput and execution time of a service including the periods where these obligations
are valid. The transformation of SLAs to policy assertions does not generate new files.
Instead, after the transformation of the WS-CDL to BPEL processes, the generated BPEL
process contains a partnerLink annotated with WS-Policy statements to express the
SLOs as enforceable policies, as can be seen in Listing 4 for execution time and throughput.

After the transformation steps, the generated BPEL and WSDL files are taken as a
starting point for implementing the private business logic. This mainly deals with aspects
that cannot be modelled from a global viewpoint in the choreography. These internal
implementations are referred to as silent actions implemented during refinement of the
BPEL code.

Finally, the services and BPEL processes are deployed to an orchestration engine such as
ActiveBPEL that is responsible for executing the BPEL processes. Besides this, the services
are published into theVRESCo runtime,whichhas a number of advantages. For instance, all
services and associated metadata are published within the registry database and can be
queried using the VRESCo core service. Furthermore, the QoS monitor integrated into the
VRESCo runtime continuously measures the QoS attributes of the services within the
runtime to monitor compliance with the SLAs defined in the choreography.

5.2. Discussion and limitations

An important point of discussion is the use of WS-CDL. Some may scrutinise why we use
choreographies instead of following a bottom-up approach that builds on orchestration

Enterprise Information Systems 471

D
o
w
n
l
o
a
d
e
d

B
y
:

[
R
o
s
e
n
b
e
r
g
,

F
l
o
r
i
a
n
]

A
t
:

1
0
:
2
8

2
4

N
o
v
e
m
b
e
r

2
0
0
8

languages such as BPEL. In fact, both modelling approaches are feasible and have their
strengths and weaknesses. However, BPEL is intended for modelling business processes
without knowledge of the global viewpoint. In contrast to this, we decided to stay close to
the vision of cross-organisational choreography descriptions by using WS-CDL.

During the implementation of our case study we encountered several aspects which
have to be considered when using such a top-down modelling approach. Some of these
issues seem inherent to the domain of model-driven development in general. On the one
hand, our approach is based on choreographies representing a global viewpoint of the
business processes which raises the need for precise modelling of the global behaviour. To
be more concrete, the business partners have to agree precisely on the message format used
for their interaction. On the other hand, after the choreography has been initially defined,
the underlying business model may evolve and lead to significant changes. Such changes
clearly affect the partner processes, which causes the generation of new BPEL processes
and corresponding WSDL files.

A similar problem of the top-down modelling approach is the compliance with existing
choreographies. In such cases, an automated generation of the BPEL processes for each
partner is not reasonable, as parts of the overall system already exist. Nevertheless, our
approach can be used to generate the local BPEL code and WSDL files from an existing
choreography. The QoS-specific policies then have to be attached manually because no
global SLA annotations are available.

Enforcing SLA is an important aspect when considering cross-organisational business
processes. So far we have focused on the modelling and integration of SLAs and QoS
attributes in choreographies and orchestrations. As part of the VRESCo project, we are
currently working on SLA enforcement. The goal is to monitor the QoS attributes from
the orchestration layer, as described in Section 4, and trigger actions if these attributes do
not comply with values defined in the SLA. Such actions may range from notifying the
service providers to assigning penalties according to some penalty model.

6. Related work

Integrating QoS in Web service based business process development has not yet received
much attention, whereas the modelling of choreographies is the subject of various research
activities (e.g. Decker et al. 2007, Zaha et al. 2006). In this section, we discuss existing
choreography modelling and transformation approaches and the integration of policies in
BPEL.

Mendling and Hafner (2007) define mapping rules for the derivation of BPEL
processes from a WS-CDL choreography description. For each WS-CDL ordering
structure and activity the corresponding BPEL construct respective activity is determined.
These mapping rules define the basis for the mapping rules used throughout the top-down
modelling process in this work. Whereas the mapping of WS-CDL to BPEL is referenced
in detail, the generation of WSDL interfaces used in the BPEL processes is not addressed
explicitly. In contrast to our work, the authors do not define explicit endpoint projection
rules to determine which ordering structures are relevant for the participants of the
choreography description. Additionally, we define mapping rules for the generation of
WSDL descriptions which correspond to the service interface descriptions of the derived
BPEL processes.

Diaz et al. (2006) use an intermediary model for the generation of BPEL processes
from a WS-CDL choreography description concentrating on Web services where time
constraints play a critical role. A choreography description is first transformed into a

472 F. Rosenberg et al.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
R
o
s
e
n
b
e
r
g
,

F
l
o
r
i
a
n
]

A
t
:

1
0
:
2
8

2
4

N
o
v
e
m
b
e
r

2
0
0
8

timed automata model which is verified and validated for correctness using formal model
checking techniques. This model is then further used to generate BPEL processes. In
contrast to our work the focus is laid on the generation and verification of the timed
automata model. Detailed mapping rules for the derivation of BPEL processes out of this
model are not specified. We argue that in the context of top-down modelling it seems more
appropriate to perform a direct mapping between WS-CDL and BPEL instead of using an
intermediary model.

Decker et al. (2007) propose an new extension to BPEL called BPEL4Chor that allows
modelling of choreographies within BPEL by leveraging an interconnected interface
behaviour model, whereas WS-CDL represents an interaction model. As stated in their
work, it has not been investigated yet which of these two approaches is more appropriate
for human modellers. While we follow a top-down approach by transforming WS-CDL
into BPEL, the authors propose a bottom-up approach by introducing a new
choreography layer on top of BPEL. However, in contrast to our work, the integration
of QoS into Web service choreographies is not addressed.

Pi4soa (pi4 Technologies Foundation 2008) is a toolset from p4 Technologies
representing one of the first WS-CDL implementations. It provides a designer tool as an
Eclipse plugin, which we used for modelling our choreographies, and a possibility to
generate Java services from a WS-CDL. The support for generating BPEL processes is
currently in progress. In contrast to pi4soa, our work considers QoS from the beginning of
the development. However, it might be interesting to include the SLA/QoS related aspects
into the pi4soa Eclipse plugin.

7. Conclusions

There have been some considerable debates as to the relationship between choreography
and orchestration. Some people argue that there is no need for choreography and all
business interactions can, and in fact should, be modelled in BPEL. Others advocate the
use of modelling by using WS-CDL but then lament the lack of execution abilities. The
prime motivation for the contribution of this paper is today’s lack of modelling support
for QoS-aware business processes. In particular, the need for QoS-aware processes is
apparent in inter-organisational business processes.

The novelty of our approach lies within the fact that we consider SLAs as first-class
entities while modelling service choreographies. Our approach allows for automatic
generation of executable BPEL orchestrations and WSDL files for each partner in the
choreography. A novel contribution is the mapping of QoS information specified in SLAs
to WS-QoS policies which are attached to the BPEL process. As a consequence, a policy-
aware middleware can verify, and possibly enforce, SLAs. The approach has been
implemented and the feasibility is demonstrated using a simplified version of a built-to-
order case study.

As future work, we plan to apply this approach to larger case studies in order to
estimate the scalability of our approach. Moreover, we are currently adding SLA
enforcement capabilities to the VRESCo runtime. Finally, we envision the implementation
of our tool support within the Pi4soa Eclipse plugin to allow a better integration with
existing modelling tools.

Acknowledgements

The research leading to these results has received funding from the European Community’s
Seventh Framework Programme [FP7/2007-2013] under Grant Agreement 215483 (S-Cube).

Enterprise Information Systems 473

D
o
w
n
l
o
a
d
e
d

B
y
:

[
R
o
s
e
n
b
e
r
g
,

F
l
o
r
i
a
n
]

A
t
:

1
0
:
2
8

2
4

N
o
v
e
m
b
e
r

2
0
0
8

We also want to thank Christian Enzi for a first prototype implementation of these mappings and the
tool support, and the anonymous reviewers for their helpful comments to improve the paper.

Notes

1. In this paper we use the term Web service and service interchangeably.
2. The case study can be downloaded from http://www.vitalab.tuwien.ac.at/*florian/

qosintegrator/.

References

Alves, A., et al., 2007. Web service business process execution language 2.0. Billerica, MA, USA:
OASIS. Available from: http://www.oasis-open.org/committees/tc_home.php?wg_abbrev¼
wsbpel [Accessed 1 October 2008].

Barros, A., Dumas, M., and Oaks, P., 2005. A critical overview of the web services choreography
description language (WS-CDL). BPTrends Newsletter, 3 (3).

Carbone, M., et al., 2007. Structured communication-centred programming for web serices. In: R.
De Nicola, ed. Proceedings of the 16th european symposium on programming (ESOP’07), 24
March–1 April 2007, Braga, Portugal. Berlin, Germany: Springer Verlag, 2–17.

Charfi, A., Khalaf, R., and Mukhi, N., 2007. QoS-aware web service compositions using non-
intrusive policy attachment to BPEL. In: B.J. Krämer, K.J. Lin, and P. Narasimhan, eds.
Proceedings of the 5th international conference on service-oriented computing (ICSOC’07), 17–20
September 2007, Vienna, Austria. Berlin, Germany: Springer Verlag, 582–593.

Decker, G., et al., 2007. BPEL4chor: extending BPEL for modeling choreographies. In: L.J. Zhang,
K.P. Birman, and J. Zhang, eds. Proceedings of the IEEE international conference on web services
(ICWS’07), 9–13 July 2007, Salt Lake City, UT, USA. Los Alamitos, CA, USA: IEEE
Computer Society, 296–303.

Diaz, G., et al., 2006. Automatic generation of correct web services choreographies and
orchestrations with model checking techniques. In: IEEE, ed. Proceedings of the international
conference on internet and web applications and services (ICIW’06), 19–25 February 2006,
Guadeloupe, French Caribbean. Los Alamitos, CA, USA: IEEE Computer Society.

Kavantzas, N., et al., 2005. Web services choreography description language (WS-CDL). Cambridge,
MA, USA: W3C. Available from: http://www.w3.org/TR/ws-cdl-10/ [Accessed 1 October 2008].

Leitner, P., et al., 2008. End-to-end versioning support for web services. In: IEEE, ed. Proceedings
of the international conference on services computing (SCC 2008), 8–11 July 2008, Honolulu, HI,
USA. Los Alamitos, CA, USA: IEEE Computer Society.

Lohmann, N., et al., 2007. Analyzing BPEL4Chor: verification and participant synthesis. In: M.
Dumas and R. Heckel, eds. Proceedings of the 4th international workshop on web services and
formal methods (WS-FM’07), 28–29 September 2007, Brisbane, Australia. Berlin, Germany:
Springer Verlag, 46–60.

Ludwig, H., et al., 2003. Web service level agreement (WSLA) language specification. Hawthorne,
NY, USA: IBM Corporation. Available from: http://www.research.ibm.com/wsla/ [Accessed 1
October 2008].

Mendling, J. and Hafner, M., 2008. From WS-CDL choreography to BPEL process orchestration.
Journal of Enterprise Information Management, 21 (5), 525–542.

Michlmayr, A., et al., 2008. Advanced event processing and notifications in service runtime
environments. In: A.P. Buchmann and S.T. Piergiovanni, eds. Proceedings of the 2nd
international conference on distributed event-based systems (DEBS’08), 1–4 July 2008, Rome,
Italy. New York, NY, USA: ACM Press.

Michlmayr, A., et al., 2007. Towards recovering the broken SOA triangle – a software engineering
perspective. In: E.D. Nitto, A. Polini, and A. Zisman, eds. Proceedings of the second international
workshop on service oriented software engineering (IW-SOSWE’07), 3 September 2007,
Dubrovnik, Croatia. New York, NY, USA: ACM Press, 22–28.

Papazoglou, M.P., et al., 2007. Service-oriented computing: state of the art and research challenges.
IEEE Computer, 40 (11), 38–45.

Peltz, C., 2003. Web services orchestration and choreography. IEEE Computer, 36 (10), 46–52.
pi4 Technologies Foundation, 2006. pi4soa. Mountain View, CA, USA: SourceForge. Available

from: http://sourceforge.net/projects/pi4soa [Accessed 25 January 2008].

474 F. Rosenberg et al.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
R
o
s
e
n
b
e
r
g
,

F
l
o
r
i
a
n
]

A
t
:

1
0
:
2
8

2
4

N
o
v
e
m
b
e
r

2
0
0
8

http://www.vitalab.tuwien.ac.at/~florian/qosintegrator/
http://www.vitalab.tuwien.ac.at/~florian/qosintegrator/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://www.w3.org/TR/ws-cdl-10/
http://www.research.ibm.com/wsla/
http://sourceforge.net/projects/pi4soa/

Rosenberg, F., et al., 2007. Integrating quality of service aspects in top-down business process
development using WS-CDL and WS-BPEL. In: IEEE, ed. Proceedings of the 11th enterprise
computing conference (EDOC’07), 15–19 October 2007, Annapolis, MD, USA. Los Alamitos,
CA, USA: IEEE Computer Society, 15–26.

Rosenberg, F., Platzer, C., and Dustdar, S., 2006. Bootstrapping performance and dependability
attributes of web services. In: IEEE, ed. Proceedings of the IEEE international conference on web
services (ICWS’06), 18–22 September 2006, Chicago, IL, USA. Los Alamitos, CA, USA: IEEE
Computer Society.

Vedamuthu, A.S., et al., 2007a. Web services policy 1.5 – attachment. Cambridge, MA, USA: W3C.
Available from: http://www.w3.org/TR/ws-policy-attach/ [Accessed 25 January 2008].

Vedamuthu, A.S., et al., 2007b. Web services policy 1.5 – framework. Cambridge, MA, USA: W3C.
Available from: http://www.w3.org/TR/ws-policy/ [Accessed 25 January 2008].

Völter, M. and Stahl, T., 2006. Model-driven software development: technology, engineering,
management. Hoboken, NJ, USA: John Wiley & Sons.

Zaha, J.M., et al., 2006. Let’s dance: a language for service behavior modeling. In: R. Meersman and
Z. Tari, eds. Proceedings of the 14th international conference on cooperative information systems
(CoopIS’06), 29 October–3 November 2006, Montpellier, France. Berlin, Germany: Springer
Verlag.

Enterprise Information Systems 475

D
o
w
n
l
o
a
d
e
d

B
y
:

[
R
o
s
e
n
b
e
r
g
,

F
l
o
r
i
a
n
]

A
t
:

1
0
:
2
8

2
4

N
o
v
e
m
b
e
r

2
0
0
8

http://www.w3.org/TR/ws-policy-attach/
http://www.w3.org/TR/ws-policy/

CD – JRA – 2.2.2

Paper [3]:

Gehlert A., Hielscher J., Danylevych O., Karastoyanova D.:

Online Testing, Requirements Engineering and Service
Faults as Drivers for Adapting Service Compositions

In: Proceedings of the International Workshop on Service
Monitoring, Adaptation and Beyond (MONA+ 2008),
December 13, 2008, Madrid, Spain, Pages 39--50, 2008.

Online Testing, Requirements Engineering and Service
Faults as Drivers for Adapting Service Compositions

Andreas Gehlert1, Julia Hielscher1, Olha Danylevych2, Dimka Karastoyanova2

1University of Duisburg-Essen, Schuetzenbahn 70, 45117 Essen, Germany
{andreas.gehlert | julia.hielscher}@sse-uni-due.de

2 IAAS, University of Stuttgart, Universitaetsstr. 38, 70569 Stuttgart, Germany
{olha.danylevych | dimka.karastoyanova}@iaas.uni-stuttgart.de

Abstract. Adaptability is a key feature of service-based applications (SBAs).
Multiple approaches for adaptability, including those borrowed from the tradi-
tional workflow technology, can be used to react to various types of changes in
the SBA’s environment. Unlike previous fragmented research, we aim at pre-
senting a unified view reflecting the convergence of approaches from require-
ments engineering, online testing and adaptation mechanisms for service com-
positions. The main result of our approach is that a dynamic binding strategy
known from service composition research leads to an interaction of the re-
quirements engineering and online testing activities with an enterprise service
registry only and, therefore, to a loose coupling between the three activities.

Keywords: Service Composition, Adaptability, Requirements Engineering,
Online Testing, Self-optimization, Web Services

1 Introduction

The software development life-cycle for service-based applications (SBAs) usually
has a very short design and testing phase [1, p. 46]. This modification of traditional
software life cycles is due to two facts: First, the increased importance of software
systems for the success of a company implies that software systems are developed
more rapidly to shorten the time to market and, second, companies rely on the inher-
ent flexibility of SBAs that facilitates their runtime adaptation according to the cur-
rent service provision, changes in (legal) regulations, systems support, and according
to existing and/or new requirements. This flexibility allows reducing the time needed
for analysing, designing, deploying and testing SBAs since testing as well as eliciting
new requirements can be postponed to the runtime phase of the SBA.

In this paper we show how the adaptability feature of SBAs changes the way in
which SBAs are developed and tested. Unlike previous approaches, which focus on
technical mechanisms needed to enable adaptation, we focus on the integration of
three different research streams, namely the adaptability of service compositions,

2 Andreas Gehlert, Julia Hielscher, Olha Danylevych, Dimka Karastoyanova

online testing and requirements engineering. We aim at showing how techniques from
these three areas may be intertwined.

Service-based applications are typically implementing a business process. The ac-
cepted approach for implementing business processes in a service-based environment
is the workflow-based approach. Workflows using services are also called service
compositions and are described in terms of control flow (tasks and their ordering),
data flow (data exchanges between tasks and with services), exception handling and
the service implementations that realise the individual tasks. Therefore, service com-
position descriptions are organized in two dimensions – control logic and functional-
ity. For simplicity we assume that an SBA is a service composition and, hence, use
both terms synonymously in this paper.

The mechanisms enabling adaptability of service compositions with respect to their
functions dimension are currently restricted to anticipating service failures. Conse-
quently, these mechanisms are not designed to react to online testing results and to
newly available services, which are discovered by the requirements engineer in a
continuous requirements engineering process.

This paper aims to bridge this gap and to extend current adaptation mechanism of
service compositions to three adaptation drivers: service failure (traditional adaptation
technique), online testing results achieved during the runtime of the SBAs and new
available services discovered in a continuous requirements engineering process.

The paper is structured as follows: In section 2 we present an overview of the ap-
proach to SBA adaptability that unifies the view of three fields of research, namely
requirements engineering, online testing and adaptation of service compositions. In
section 3 we identify the drivers for adaptability of SBAs, which are closely linked to
our adaptation approach. This integration is then demonstrated with the help of an
example in section 4 and the conclusions are summarised in section 5.

2 Integrating RE, Online Testing and Service Composition
Adaptation Techniques

The aim of this section is twofold: First, we describe the rationale of our approach
by introducing motivating scenarios and, second, we describe the adaptation of ser-
vice compositions, requirements engineering and online testing in more detail. The
approach is outlined in Figure 1.

Online Testing, Requirements Engineering and Service Faults as Drivers for Adapting Service
Compositions 3

Figure 1: Integration of Online Testing, Requirements Engineering and Ser-

vice Composition Adaptation Techniques

To illustrate our approach, we use the wine production example introduced in [2, p.
330] (cf. Figure 2 for the wine production process). The wine delivery process is
described by six activities. The process starts with buying wine grapes (task “Buy
Grapes”). After this task, the production (task “Produce wine”) is carried out. After-
wards the process might proceed in two different ways. The first way is storing the
wine in oak barrels to mature (task “Store”), which may be followed by the shipment
task (“ship wine”) or by finishing the production process (task “Wine lot production
finished”). The alternative is to ship the wine immediately (task “Ship wine”) fol-
lowed by receiving a delivery note (task “Receive delivery note”) and finished by the
task “Wine lot production finished”.

Assume now the following three scenarios which need three different adaptability
drivers:

1. Scenario 1 - Requirements Engineering: Assume that the requirements engi-

neer found a new shipping service, which is cheaper than the previously used
service in the service composition (). If the requirements engineer decides to
use this service in the service composition s/he needs to send an adaptation re-
quest () to the process engine, which will eventually notify the service mid-
dleware (). This in turn leads to the usage of the new service in the service
composition ().

2. Scenario 2 - Online Testing Scenario: Assume that online testing finds a fail-
ure in the “Buy grapes” service, which would lead to buying red instead of
white grapes under some circumstances () before invoking the service for a
particular SBA instance. In this case the online testing activity () initiates an
adaptation request. This adaptation request leads to a notification of the mid-
dleware (), which needs to find a new service and to use this service in the
service composition ().

3. Scenario 3 - Service Failure Scenario: Assume that the middleware wants to
invoke the “shipment” service, which is currently not available. As a conse-
quence, the middleware sends and adaptation request, which is either handled

4 Andreas Gehlert, Julia Hielscher, Olha Danylevych, Dimka Karastoyanova

by the middleware itself () or by the service compositions (). In any case
the service composition is adapted to use a new service ().

To understand the interplay between requirements engineering, online testing and

adaptation, these techniques are described in the following subsections in more detail.

2.1 Requirements Engineering

Requirements engineering (RE) in traditional software engineering process models
is carried out as separate activity before the design of the software system. It aims to
elicit, document and agree upon the goals, assumptions and requirements of the soft-
ware system to be [3]. Although RE activities are also an essential part of the engi-
neering process for SBAs, which determine the goals and purposes of the SBA, we
argue that requirements engineering should be a continuous process, which covers the
entire life cycle of the SBA. The rationale of this argument is the adaptability of the
SBA, which allows the requirements engineer to trigger an adaptation of the SBA,
e. g. in case of newly available services (scenario 1).

If a new service becomes available the requirements engineer needs to check for
two conditions: First, the new service must provide the functionality, which is actu-
ally needed by the SBA, i. e. the service must “fit” with the purpose of the SBA. Sec-
ond, the service should fulfil the requirements better than the previously used service.
The second requirement ensures that the new service is superior to existing services.
This continuous requirements engineering approach rests on the assumption that new
services become available over time.

The algorithms needed for this continuous requirements engineering process are
described in [4, 5]. The main idea of these approaches can be described as follows:
The requirements of a SBA are described as Tropos goal models [6, 7]. The rationale
for using Tropos is threefold: First, Tropos is a comprehensive approach to develop
software systems from early requirements to their implementation. Second, Tropos
was already applied to the service discipline, e. g., it was already shown that it is
applicable to SBAs [e. g. 8, 9-12]. Third, Tropos comes with a formalisation which
allows analysing the influence of the satisfaction of one goal on the entire goal model
[13].

Based on the assumption that services are described with goal models, the re-
quirements engineer has to carry out the following two steps once a new service be-
comes available: First, the goal model of the new service should be contained in the
goal model of the SBA. This step ensures that the new service provides a functionality
needed by the SBA. Second, once this matchmaking is done, the goal satisfaction for
all hard- and soft-goals can be calculated based on TROPOS’s goal propagation algo-
rithm. The result of this calculation is threefold: First, the goal satisfaction rates of
some goals are higher while the goal satisfaction rates for the remaining goals remain
unchanged. In this case the new service is superior to the existing one and it should be
used (pareto principle). Second the goal satisfaction rates of some goals are lower
then before and remain unchanged for all other goals. In this case the service is infe-
rior to the previous one and it should not be used. Third, the goal satisfaction rates are
higher for some goals and lower for some other goals. In this case the requirements

Online Testing, Requirements Engineering and Service Faults as Drivers for Adapting Service
Compositions 5

engineer needs to decide whether to use the new service based on the priority of the
different goals.

This goal driven approach to SBA leads to perfective maintenance known from
software engineering [14, p. 493] or to so called self optimization in the service world
[1, p. 43]. The interaction of this approach with the adaptation of the service composi-
tion is described in section 3.

2.2 Online Testing
In traditional software development processes quality assurance including testing is

almost finished when the runtime of a system starts. The loose coupling feature of
SBAs, however, allows to easily adapting the SBA during runtime so that the testing
phase and the runtime phase of an SBA may overlap. This means that some testing
activities are purposely postponed until the SBA is up and running [15, p. 40]. The
consequence of this overlap is that the SBA may be modified once an error is detected
during the runtime quality assurance – in particular online testing – activities.

Similar to traditional software systems, two different inputs can be considered to
assure the quality of SBAs: monitoring information and testing outputs. In contrast to
traditional software development the comparison of expected and actual behaviour
and possible following adaptations has to be done at runtime. Consequently, not only
monitoring techniques but also online testing techniques are relevant to assure the
quality of the entire SBA. However, due to space limitation, we only concentrate on
online testing in this paper.

Hielscher et al. present the PROSA (PRO-active Self-Adaptation) framework in
[16], which enables online testing in addition to traditional runtime quality assurance
methods such as monitoring. The results of the online testing activities are compared
with expected results to detect problems, which may be resolved by adaptations.
Online testing aims at finding possible problems before they occur in a running in-
stance of the SBA. The underlying assumption of PROSA is that online testing activi-
ties do not interfere with the running SBA. This requires that each service, which
should be tested, offers a test mode. This test mode prevents the “normal” execution
of all activities of an instance of the SBA, which trigger more than just returning a
computational result – e. g. it prevents the delivery of physical goods.

Testing service compositions by testing their constituent services requires that the
services are known at test time. This means that either the services are statically con-
nected to the tasks of the service composition (see below) or that the registry from
which the services are discovered contains a constant set of services during test time.
If none of the two previous conditions holds, it follows that online testing must be
executed in parallel to each service composition instance since the services used in
different service composition instances may differ. This approach, however, requires
considerable computational resources and is, therefore, discarded here.

2.3 Adaptation
Adaptations in service compositions can be carried out during design time or during
runtime. During design time the process model, which describes control and data flow
can be modified in any possible way, including the assignment of service implementa-

6 Andreas Gehlert, Julia Hielscher, Olha Danylevych, Dimka Karastoyanova

tions to tasks or the modification of the control and data flow of the workflow defini-
tion ([17]).

During runtime the process model may be altered so as to assign new service im-
plementations to process tasks [e. g. 18] or to modify the control and data flow com-
pletely. After these modifications it must be decided whether all running instances
should benefit from these modifications (instance migration), whether some of the
running instances should benefit from these modifications or whether future instances
should use the modifications only. If the modifications target only some instances of a
process model, the changes are called ad-hoc changes and are not reflected in the
process model.

According to the previous classification of adaptation, we need to distinguish two
modification dimensions – e. g. modification of the process model and modification
of the assignment of concrete services to process model tasks – and two phases in the
SBA lifecycle – e. g. design time and runtime. In this paper, however, we only focus
on modifying the assignment of service implementations to process tasks during run-
time.

This assignment is based on so called binding strategies. According to [20] and
[19, p. 536] we can distinguish between two major binding strategies: First, the static
binding strategy requires that the service implementations are assigned to the activi-
ties during design or deployment time. Second, dynamic binding requires a declara-
tive description of the requirements of the service at design or deployment time. The
actual service implementations are then discovered by the underlying middleware
during runtime based on the declaratively specified criteria.

The dynamic binding strategy is the most flexible approach for service binding be-
cause it enables the discovery of service implementations during runtime based on
requirements for the service selection specified declaratively prior to the process exe-
cution. In case of a service implementation failure, the middleware is then able to
discover a new service implementation according to the specified requirements. The
functional part of the requirements is typically provided by the service composition
(e. g. operation and port type) and the non-functional requirements are specified in
separate artefacts associated with the composition (e. g. WS-Policy definitions). It is
important to note that these requirements for service selection are specified at the
latest during the deployment phase of SBA development. This means, that the selec-
tion criteria even in the most flexible strategy for service binding are fixed during
runtime.

3 Adaptability Drivers

Service-based applications that are implemented using the process-based approach
can be adapted as a reaction to changes in the environment or according to the occur-
rence of exceptional situations using the approaches for process adaptability described
in the previous section. Adaptation of the SBAs can be thus triggered by the following
drivers:

Online Testing, Requirements Engineering and Service Faults as Drivers for Adapting Service
Compositions 7

1. Recommendations from the requirements engineer: Typically, enterprises have
contract relationships with other business partners. This fact is reflected in the set
of service implementations that may be used in service compositions. These part-
ner service implementations usually meet the requirements specified by the re-
quirements engineers in the enterprise. In some cases however, due to the dy-
namic nature of the service market, new relationships are established with other
(previously unknown) partners. If the newly introduced service is better and/or
more appropriate (e. g. cheaper, faster etc.), the requirements engineer is entitled
to recommend the use of this new service (adaptation trigger).

2. Results from online tests: Online tests of service implementations are performed
during the runtime of the SBA. If a test of a service fails the online testing expert
may recommend to discontinue using the service (adaptation trigger).

3. Service failures: During the execution of process instances the discovery, selec-
tion and invocation of a service is delegated to the service middleware (Note that
in the case of static binding strategy the discovery and selection steps are not
needed). The middleware is responsible for tackling the situation in which se-
lected services exhibit failures when invoked. In case the middleware cannot dis-
cover any service compliant with the requirements provided by the process model
and the process execution environment, and as specified by the requirements en-
gineer, the service selection criteria may be adapted. The new alternative criteria
are then used to discover and select another service that can perform on behalf of
the process (adaptation trigger).

All three mechanisms are explained in the next section along with our wine example.

4 Example

The presentation of the mechanisms enabling the reaction to the adaptability drivers
presented in the previous section will be demonstrated with the help of the example
introduced in section 1. Figure 2 depicts the process described by the example. The
figure also shows the available service implementations assigned to the tasks either by
static or dynamic binding – e. g. the “Grapes retailer” service is bound to the “Buy
grapes” task while three different shipment services are available to support the “Ship
wine” and “Receive delivery note” tasks.

8 Andreas Gehlert, Julia Hielscher, Olha Danylevych, Dimka Karastoyanova

Figure 2. Example of a Wine Production Process.

The process is executed by a process engine which relies on a service middleware
[20]. The middleware supports among others the discovery and invocation of services
that the process composes (infrastructure services). If the binding strategy for a task is
static, the middleware can only invoke the concrete service implementation as defined
in the process definition; the middleware receives the input data for the service and its
endpoint reference (EPR [20]). After the invocation of the service implementation the
middleware returns the result from the service invocation to the process engine and
hence to the process instance. The middleware performs an additional step if the bind-
ing strategy is dynamic. Before a service invocation can be carried out a discovery of
a set of service implementations compliant with the requirements (provided in the
process definition) is triggered and the most appropriate service implementation is
selected.

All the adaptation mechanisms listed in the previous section require service invo-
cation. Depending on the binding strategy (static vs. dynamic) service discovery and
selection may (dynamic binding) or may not (static binding) be needed. In the rest of
this section we present the adaptation approaches that can be triggered as a possible
reaction to the adaptation drivers we cover here. All these approaches make use of the
infrastructure services supported by the service middleware.

4.1 Adaptation Triggered by the Requirements Engineer

As new services become available outside the enterprise service registry, the require-
ments engineer needs to decide whether the newly available service should be used.
This decision is made according to the mechanism described in subsection 2.3. Once a

Online Testing, Requirements Engineering and Service Faults as Drivers for Adapting Service
Compositions 9

decision to use the new service is made, the requirements engineer has two choices to
make use of the service in the service composition: Using the static binding strategy,
the requirements engineer may exchange the static service reference of one or more
tasks directly in the process model and to either migrate all instances, selected in-
stances or no instances to this new process model. If the dynamic binding strategy is
used, it is sufficient to register the new service in the service registry. Due to the en-
hanced service characteristics, the new service implementation will be given prefer-
ence by the middleware’s service discovery component.

Assume that the shipment service of company D becomes available and the re-
quirements engineer decides to use it for the above service composition. In a static
binding scenario the requirements engineer initiates the exchange of the static refer-
ence for the task “Ship wine” from the shipment service of company A to the ship-
ment service of company D. In a dynamic binding scenario, the shipment service of
company D is registered in the enterprise service registry and the middleware will
automatically prefer it over the shipment service of companies A–C because of its
better suitability to the requirements.

Requirements engineering for service based applications is a relatively new field.
Existing approaches cover the description of requirements for SBAs [e. g. 8], the
discovery of services using goal models [e. g. 4], the consistency check between goal
models and workflows [e. g. 12] and the continuous goal-driven optimization of
SBAs [e. g. 5].

4.2 Adaptation Triggered by Online Testing

As described above, online testing may find failures, which require an adaptation. The
adaptation action required depends on the binding strategy. If the binding strategy
prescribes static binding, the faulty service must be replaced in the process model
(usually in the deployment information). After this replacement the process model
must be re-deployed and it must be decided whether all running instances (instance
migration), selected running instances or all new instances should be migrated to the
new process model.

Assume that the shipment service of company A should be tested in our example
above. The tester generates test cases with deadlines, lists of goods to be shipped and
customer address data as input. Then the output is checked against the expected out-
put. In our scenario, the expected output is a delivery note and an invoice. If the ser-
vice of shipping company A cannot deliver a delivery note, this failure is reported and
an adaptation is triggered. The service of shipping company A is then removed from
the process model (static binding) or from the registry (dynamic binding) and re-
placed by another service, e. g. the shipping service of company B.

Numerous testing techniques exist in the literature. An overview of testing tech-
niques for services is given in [21, pp. 48]. Especially test case generation from exist-
ing Business Process Execution Language (BPEL) specifications is described in [22,
23]. These existing approaches have to be adapted for using them in parallel to proc-
ess instance execution.

10 Andreas Gehlert, Julia Hielscher, Olha Danylevych, Dimka Karastoyanova

4.3 Adaptation Triggered by Service Faults

The third driver for adaptation of service compositions are failures of the com-
posed services. A mechanism for tackling such failures for both statically and dy-
namically bound services is needed to ensure the completion of the process instance.
This mechanism involves discovery and selection of a new service capable of per-
forming the task in the process with similar requirements.

In the dynamic binding strategy it is up to the middleware to discover and invoke a
service compliant to both the functional and quality requirements specified in the
process definition. If the middleware in not able to discover such a service implemen-
tation, an alternative set of (quality) requirements may be specified in the process
model and hence used by the middleware for service discovery and selection. In case
of a static binding strategy, the middleware does not have to discover a new service
and, hence, the service composition must be repaired manually or automatically using
an alternative set of requirements to the service.

In the context of the wine production example, consider for instance that shipment
company A ships goods for less than 100,000.00 € and within one week. Assume now
that the shipment service of company A is temporarily not available. As an alternative
service implementation the wine producer might be willing to pay more than origi-
nally specified to a shipping company that can comply with the time constraint (e. g.
shipment company B). The discovery and invocation of such a service is performed
by the middleware provided that the alternative quality requirements are made avail-
able to it by the service composition definition.

Adaptation mechanisms for BPEL processes are presented in [18, 24], where the
quality requirements are specified as Web Ontology Language for Web Services
(OWL-S) service descriptions and encapsulated in WS-Policies. Prototypical imple-
mentations of an infrastructure including a BPEL engine and a service bus are also
available for both the OWL-S and Web Service Modelling Ontology (WSMO) based
approaches.

5 Conclusion

In this paper we integrated requirements engineering, online testing and state-of-the-
art adaptation mechanisms for service compositions. The paper shows clearly that the
dynamic binding strategy driven by pre-described service requirements is beneficial
over the static binding strategy. The dynamic binding strategy resolves automatically
all service faults, e. g. due to unavailable service implementations. In addition, re-
quirements engineering and online testing only need to interact with the enterprise
service registry and have no other influence on the existing service middleware.
While the online testing aims to remove faulty services from the registry, the re-
quirements engineering activity aims to add new and innovative services to it, which
lead to a better fulfilment of the SBA’s requirements. The static binding strategy,
however, requires a modification of the process model and its redeployment.

We are also able to identify future research for the integration of online testing and
workflow modelling as well as the integration of requirements engineering with work-

Online Testing, Requirements Engineering and Service Faults as Drivers for Adapting Service
Compositions 11

flow modelling. Online testing techniques require a certain sequence of tests, e. g. the
tester needs to know, which service implementation to test first. This sequence de-
pends heavily on the workflow(s) in which the service implementation is used. In
addition, this paper and the cited online testing techniques cover only service testing.
However, it is also important to test the whole service composition, e. g. the workflow
itself (integration test). Techniques need to be developed and integrated with adapta-
tion techniques.

For the requirements engineering field, the most predominant problem is the map-
ping of the requirements to service descriptions, e. g. to OWL-S. This mapping en-
sures that services identified as superior in the requirements engineering activity, are
actually given preference during service discovery carried out by the middleware. In
addition, workflow instances may be tailored to the so-called context-factors, e. g.
workflows may be adapted to certain users or a certain device. These context-aware
workflow adaptations require a tight integration of workflow and requirements engi-
neering research.

Acknowledgements

The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme FP7/2007-2013 under grant agreement
215483 (S-Cube).

References

1. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. IEEE Computer 36
(2003) 41-50

2. Nitto, E.D., Ghezzi, C., Metzger, A., Papazoglou, M., Pohl, K.: A Journey to Highly Dy-
namic, Self-Adaptive Service-Based Applications. Automated Software Engineering (2008)
257-402

3. Pohl, K.: Requirements Engineering - Grundlagen, Prinzipien, Techniken. dpunkt (2008)
4. Gehlert, A., Bramsiepe, N., Pohl, K.: Goal-Driven Alignment of Services and Business

Requirements. 4th International Workshop on Service-Oriented Computing Consequences
for Engineering Requirements (SOCCER 2008), Barcelona, Spain (2008)

5. Gehlert, A., Heuer, A.: Towards Goal-Driven Self Optimisation of Service Based Applica-
tions. 1st International Conference of the Future of the Internet of Services (ServiceWave
2008). Springer, Madrid, Spain (2008), 13–24

6. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An Agent-
Oriented Software Development Methodology. Autonomous Agents and Multi-Agent Sys-
tems 8 (2004) 203–236

7. Castro, J., Kolp, M., Mylopoulos, J.: Towards Requirements-Driven Information Systems
Engineering: The Tropos Project. Information Systems 27 (2002) 365–389

8. Aiello, M., Giorgini, P.: Applying the Tropos Methodology for Analysing Web Services
Requirements and Reasoning about Qualities. UPGRADE: The European Journal for the In-
formatics Professional 5 (2004) 20–26

12 Andreas Gehlert, Julia Hielscher, Olha Danylevych, Dimka Karastoyanova

9. Lau, D., Mylopoulos, J.: Designing Web Services with Tropos. International Conference on
Web Services (ICWS 2004), San Diego, CA, USA (2004) 306–313

10. Misra, S.C., Misra, S., Woungang, I., Mahanti, P.: Using Tropos to Model Quality of Ser-
vice for Designing Distributed Systems. International Conference on Advanced Communi-
cation Technology (ICACT 2006), Phoenix Park, Gangwon-Do, Republic of Korea (2006)
541–546

11. Penserini, L., Perini, A., Susi, A., Mylopoulos, J.: From Stakeholder Needs to Service Re-
quirements. 2nd International Workshop on Service-Oriented Computing: Consequences for
Engineering Requirements (SOCCER 2006), Minneapolis, Minnesota, USA (2006) 8–17

12. Pistore, M., Roveri, M., Busetta, P.: Requirements-Driven Verification of Web Services.
Electronic Notes in Theoretical Computer Science 105 (2004) 95–108

13. Giorgini, P., Mylopoulos, J., Nicchiarelli, E., Sebastiani, R.: Formal Reasoning Techniques
for Goal Models. Journal on Data Semantics. Springer, Berlin, Heidelberg (2003) 1–20

14. Swanson, E.B.: The Dimensions of Maintenance. International Conference on Software
Engineering (ICSE 1976), San Francisco, CA, USA (1976) 492–497

15. Baresi, L., Nitto, E.D., Ghezzi, C.: Toward Open-World Software: Issue and Challenges.
IEEE Computer 39 (2006) 36–43

16. Hielscher, J., Kazhamiakin, R., Metzger, A., Pistore, M.: A Framework for Proactive Self-
Adaptation of Service-based Applications Based on Online Testing. 1st International Con-
ference of the Future of the Internet of Services (ServiceWave 2008), Madrid, Spain (2008)

17. van der Aalst, W.M.P., Jablonski, S.: Dealing with Workflow Change: Identification of
Issues and Solutions. International Journal of Computer Systems Science and Engineering
15 (2000)

18. Karastoyanova, D., Houspanossian, A., Cilia, M., Leymann, F., Buchmann, A.: Extending
BPEL for Run Time Adaptability. 9th International Conference on Enterprise Distributed
Object Computing (EDOC 2005), Enschede, The Netherlands (2005) 15–26

19. Karastoyanova, D., Leymann, F., Buchmann, A.P.: An Approach to Parameterizing Web
Service Flows. In: Benatallah, B., Casati, F., Traverso, P. (eds.): 3rd International Confer-
ence on Service Oriented Computing (ICSOC 2005). Springer, Amsterdam, The Nether-
lands (2005) 533–538

20. Weerawarana, S., Curbera, F., Leymann, F., Ferguson, D.F., Storey, T.: Web Services Plat-
form Architecture: Soap, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable
Messaging and More. Prentice Hall (2005)

21. Pernici, B., Metzger, A. (eds.): S-Cube Project Deliverable PO-JRA-1.3.1 - Survey of qual-
ity related aspects relevant for SBAs (2008)

22. Lübke, D.: Unit Testing BPEL Compositions. In: Baresi, L., Nitto, E.D. (eds.): Test and
Analysis of Web Services. Springer (2007) 149–171

23. Dong, W.-L., Yu, H., Zhang, Y.-B.: Testing BPEL-based Web Service Composition Using
High-level Petri Nets. 10th IEEE International Enterprise Distributed Object Computing
Conference (2006) 441–444

24. Karastoyanova, D., van Lessen, T., Nitzsche, J., Wetzstein, B., Wutke, D., Leymann, F.:
Semantic Service Bus: Architecture and Implementation of a Next Generation Middleware.
Proceedings of the 23rd International Conference on Data Engineering Workshops (ICDE
2007), Istanbul, Turkey (2007)

	CD-JRA-2.2.2_Models_and_Mechanisms_for_Coordinated_Service_Compositions
	CD-JRA-2.2.2_Paper1
	CD-JRA-2.2.2_Paper1
	CD-JRA-2.2.2_Paper2
	CD-JRA-2.2.2_Paper2
	CD-JRA-2.2.2_Paper3
	CD-JRA-2.2.2_Paper3
	1 Introduction
	2 Integrating RE, Online Testing and Service Composition Adaptation Techniques
	2.1 Requirements Engineering
	2.2 Online Testing
	2.3 Adaptation

	3 Adaptability Drivers
	4 Example
	4.1 Adaptation Triggered by the Requirements Engineer
	4.2 Adaptation Triggered by Online Testing
	4.3 Adaptation Triggered by Service Faults

	5 Conclusion
	Acknowledgements
	References

