
Grant Agreement No 215483

Title: Initial Concepts for Specifying End-to-End Quality Characteristics and Nego-
tiating SLAs

Authors: CITY, FBK, INRIA, Polimi, SZTAKI, Tilburg, UCBL, UniDue, UPM, USTUTT

Editors: Kyriakos Kritikos (Polimi) and Barbara Pernici (Polimi)

Reviewers: Raman Kazhamiakin (FBK)
Manuel Carro (UPM)

Identifier: CD-JRA-1.3.3

Type: Deliverable

Version: 1.3

Date: June 16, 2009

Status: Final

Class: External

Management summary

The aim of this deliverable is two-fold. Firstly, it aims at defining the initial concepts for
specifying and negotiating end-to-end quality, i.e., a service quality meta-model suitable for the
definition and negotiation of service quality specifications and SLAs. The research method for
creating this quality meta-model follows a design approach. Initially, requirements are collected
dictating the information, structure, and constraints that this meta-model should capture. Then,
based on these requirements, the meta-model is designed and finally created. Secondly, this
deliverable aims at proposing a methodology for decomposing end-to-end quality into quality
specifications for individual SLAs. The research method for achieving this goal follows a hy-
brid approach: a proof-of-concept and a paper-based approach. In particular, the meta-model’s
effectiveness and sufficiency is highlighted by modeling a composite service negotiation sce-
nario and its result, which is a decomposition of end-to-end quality into quality specifications of
individual SLAs. Then, initial attempts (materialized in papers of WP members) are provided
that address (composite) service negotiation.

Copyright 2009 by the S-Cube consortium All rights reserved.

The research leading to these results has received funding from the European Community’s Seventh
Framework Programme FP7/2007-2013 under grant agreement n 215483 (S-Cube).

Members of the S-Cube consortium:

University of Duisburg-Essen (Coordinator) – UniDue Germany
Tilburg University – Tilburg Netherlands
City University London – CITY U.K.
Consiglio Nazionale delle Ricerche – CNR Italy
Center for Scientific and Technological Research – FBK Italy
French Natl Institute for Research in Computer Science and Control – INRIA France
The Irish Software Engineering Research Centre – Lero Ireland
Politecnico di Milano – Polimi Italy
MTA SZTAKI – Computer and Automation Research Institute – SZTAKI Hungary
Vienna University of Technology – TUW Austria
Universit Claude Bernard Lyon – UCBL France
University of Crete – UOC Greece
Technical University of Madrid – UPM Spain
University of Stuttgart – USTUTT Germany
University of Amsterdam – VUA Netherlands
University of Hamburg – UniHH Germany

Published S-Cube documents

These documents are all available from the S-Cube Web Portal at http://www.s-cube-network.eu/

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.3

The S-Cube Deliverable Series

Vision and Objectives of S-Cube

The Software Services and Systems Network (S-Cube) will establish a unified, multidisciplinary, vibrant
research community which will enable Europe to lead the software-services revolution, helping shape
the software-service based Internet which is the backbone of our future interactive society.

By integrating diverse research communities, S-Cube intends to achieve world-wide scientific excel-
lence in a field that is critical for European competitiveness. S-Cube will accomplish its aims by meeting
the following objectives:

• Re-aligning, re-shaping and integrating research agendas of key European players from diverse
research areas and by synthesizing and integrating diversified knowledge, thereby establishing a
long-lasting foundation for steering research and for achieving innovation at the highest level.

• Inaugurating a Europe-wide common program of education and training for researchers and in-
dustry thereby creating a common culture that will have a profound impact on the future of the
field.

• Establishing a pro-active mobility plan to enable cross-fertilisation and thereby fostering the in-
tegration of research communities and the establishment of a common software services research
culture.

• Establishing trust relationships with industry via European Technology Platforms (specifically
NESSI) to achieve a catalytic effect in shaping European research, strengthening industrial com-
petitiveness and addressing main societal challenges.

• Defining a broader research vision and perspective that will shape the software-service based In-
ternet of the future and will accelerate economic growth and improve the living conditions of
European citizens.

S-Cube will produce an integrated research community of international reputation and acclaim that
will help define the future shape of the field of software services which is of critical for European com-
petitiveness. S-Cube will provide service engineering methodologies which facilitate the development,
deployment and adjustment of sophisticated hybrid service-based systems that cannot be addressed with
today’s limited software engineering approaches. S-Cube will further introduce an advanced training
program for researchers and practitioners. Finally, S-Cube intends to bring strategic added value to Eu-
ropean industry by using industry best-practice models and by implementing research results into pilot
business cases and prototype systems.

S-Cube materials are available from URL: http://www.s-cube-network.eu/

External Final Version 1.3, Dated June 16, 2009 1

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.3

Foreword

The aim of this deliverable is twofold.

• Firstly, it aims at providing the initial concepts for specifying and negotiating end-to-end quality,
i.e., a service quality meta-model suitable for the definition and negotiation of service quality
specifications and SLAs. The research method for creating this quality meta-model follows a
design approach. Initially, requirements are collected dictating the information and constraints that
this meta-model should capture. Then, based on these requirements, the meta-model is designed
and finally created.

• Secondly, it aims at proposing a methodology for decomposing end-to-end quality into quality
specifications for individual SLAs. The research method for achieving this goal follows a hybrid
approach: a proof-of-concept and a paper-based approach. In particular, the meta-model’s effec-
tiveness and sufficiency is highlighted by modeling a composite service negotiation scenario and
its result, which is a decomposition of end-to-end quality into quality specifications of individual
SLAs. Then, initial attempts (materialized in papers of WP members) are provided that address
(composite) service negotiation.

Acknowledgments: The editors would like to thank Andreas Metzger for his valuable help in plan-
ning this deliverable. A special thanks goes to the CITY team and especially to Khaled Mahbub for
his helpful and detailed comments on the first two main sections of the deliverable. Finally, we thank
all S-Cube members who have contributed to this deliverable and especially Raman Kazhamiakin and
Manuel Carro for their valuable and detailed comments on earlier versions of the document.

External Final Version 1.3, Dated June 16, 2009 2

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.3

Contents

1 Introduction 6
1.1 Motivation . 6
1.2 Research Method . 7
1.3 Relation to the WP Challenges . 8

2 Requirements for the S-Cube Quality Modeling Language 10
2.1 Extensible and Formal Service Quality Model . 10
2.2 Syntactical Separation . 11
2.3 Both Client and Service Quality Specifications . 11
2.4 Refinement of Service Quality Specifications . 11
2.5 Fine-Grained Service Quality Specifications . 11
2.6 Symmetric Model of Service Quality Specifications . 12

2.6.1 Asymmetric Models . 12
2.6.2 Symmetric Models . 12

2.7 Relevant Aspects for Service Quality Attributes Models 13
2.7.1 Basic Aspects . 13
2.7.2 Additional Aspects . 16

2.8 Expressiveness and Correctness in Constraint Definitions 18
2.9 Support for Multiple Classes of Service Specifications 19
2.10 Support for Alternative Service Quality Demand Specifications 20
2.11 Other Useful Service Quality Information . 20
2.12 Negotiation-Specific Information . 20

2.12.1 Negotiation Actors and Roles . 20
2.12.2 Negotiation Protocol . 21
2.12.3 Negotiation Strategy . 21
2.12.4 Cost model . 21
2.12.5 Exceptional conditions . 21
2.12.6 Penalties . 21
2.12.7 Time Limit . 21

3 The S-Cube Quality Meta-Model 22
3.1 Basic Quality Concepts . 22
3.2 Quality Specification Constructs . 26

3.2.1 Matchmaking, Negotiation, and Contracting Information 26
3.2.2 Quality Specification Information . 27

4 End-to-End Quality Decomposition through Service Negotiation 29
4.1 Problem Instantiation and Meta-model Usage . 29

4.1.1 Problem Instantiation . 29
4.1.2 Meta-model Usage . 30

External Final Version 1.3, Dated June 16, 2009 3

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.3

4.2 Initial approaches for negotiating composite SLAs . 31
4.2.1 Solution . 32
4.2.2 Paper [1]: Semantic-Aware Service Quality Negotiation 33
4.2.3 Paper [2]: A Framework for QoS-Based Web service Contracting 34
4.2.4 Paper [3]: A Dynamic Privacy Model for Web Services 35

5 Discussion and Conclusions 37
5.1 Candidate Formalisms for the Meta-Model . 37

5.1.1 Quality Definition, Validation, and Alignment 38
5.1.2 Quality-based Service Matchmaking . 38
5.1.3 Service Negotiation . 39

5.2 End-to-End Quality Assurance . 39

External Final Version 1.3, Dated June 16, 2009 4

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.3

List of Figures

2.1 Conformance in asymmetric models . 12
2.2 Conformance in symmetric models . 13

3.1 Basic Quality Concepts . 24
3.2 Quality Specification Constructs . 28

External Final Version 1.3, Dated June 16, 2009 5

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.3

Chapter 1

Introduction

1.1 Motivation

As Service-Based Applications (SBAs) operate in a highly dynamic environment, techniques are needed
to aggregate individual quality levels of the services involved in the SBA composition in order to de-
termine and thus check the end-to-end quality during run-time. This aggregation will typically span
different layers of a service-based application and thus a common understanding of what the different
quality attributes mean within and across these layers is needed. As of today there are only a few tech-
niques and methods that address the quality characteristics in a comprehensive and cross-cutting fashion
across all layers of a service-based application and integrating all phases of SLA conception, negotiation,
agreement, monitoring and refinement. In addition, very few approaches address observing the context
of a service-based application and its impact on quality.

In the previous deliverable of this WP, namely CD-JRA-1.3.2, the S-Cube Quality Reference Model
(QRM) was devised. In this QRM, a set of relevant quality attributes was defined and structured accord-
ingly into different quality groups. Quality attributes were collected from different research disciplines
and consolidated into a coherent and extensive quality model. Different kinds of quality attributes that
are important to SBAs were included like Quality of Service (QoS), Quality of Experience (QoE), and
Quality of Information (QoI). While QoS is a cross-cutting kind of quality attribute relevant to services
at each functional layer, other kinds of quality are only relevant to specific functional layers. For in-
stance, QoI attributes are important for the infrastructure and service layer. So, this QRM provides an
understanding of which quality attributes are relevant to each functional layer, how they are defined, and
how they relate to each other. However, this understanding is just the first step.

In the current literature, quality attributes are assumed to be independent of each other. As a con-
sequence, quality offerings and SLAs are defined based on this assumption containing in this way only
unary constraints on some quality metrics measuring quality attributes. However, in order to support
end-to-end quality provision, the dependencies between different quality attributes at the same or differ-
ent functional layers and between the same quality attributes across the layers have to be modeled and
defined. In this way, the effect that one quality attribute has on another one will be explicitly defined and
considered during end-to-end quality aggregation.

Apart from the lack of modeling quality attribute dependencies, existing languages for quality defi-
nition offer limited capabilities for automated negotiation and quality-aware service composition. More-
over, they only provide isolated and fixed sets of quality attributes for expressing quality capabilities or
requirements. Actually, the survey carried out in the first deliverable of this WP, namely PO-JRA-1.3.1,
has uncovered the lack of a well established, rich, extensible, and semantically enriched quality definition
language. This survey also revealed that service quality capabilities and requirements, as well as SLAs
are described by many different formalisms and languages. So, the differences between these formalisms
limit the fulfillment of the vision of automated and precise quality-based service matchmaking, selection
and negotiation, as well as quality-aware service composition.

External Final Version 1.3, Dated June 16, 2009 6

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.3

To this end, this deliverable designs and develops a quality meta-model encompassing the concepts
for a rich, extensible, and semantically enriched quality definition language. This meta-model allows the
description of every relevant aspect of quality for services and SBAs, including attributes, metrics, units,
measurement functions and directives, constraints, value types, etc. It can also be used to describe the
S-Cube’s QRM and is extensible so as to allow the addition of new quality attributes when it is needed.
In addition, it is semantically-enriched in order to be machine-processable or machine-interpretable.
Moreover, it is capable of expressing quality capabilities and SLAs by using functions, operators and
comparison predicates on quality metrics. Finally, this meta-model expresses quality attribute dependen-
cies and allows the description of composition rules for possible combinations of composition constructs
and quality metrics.

In addition to aggregating end-to-end quality, this deliverable also deals with the opposite problem:
supposing that there are end-to-end quality requirements requested by a service requester, how end-
to-end quality can be decomposed into individual service quality of the component services embodied
into service quality specifications and SLAs. The tackling of this problem is crucial in cases where a
composite service provider has to assure that the end-to-end quality offered by his service and agreed
with a service requester is guaranteed. This deliverable approaches this instance of the end-to-end quality
assurance problem by relying on the assumption that the composite service provider is engaged in a
complex negotiation with many service providers, which have services that match the component services
of the composite service, during or after the negotiation with the service requester. The complexity of
this kind of negotiation is that all individual service negotiations depend on each other and have specific
quality goals to achieve. So when one negotiation fails, then end-to-end quality has to be re-decomposed,
while already agreed individual SLAs have to be re-negotiated and the other non-finished negotiations
have to be reset.

As this problem is novel and very complex, there are currently very limited research approaches
solving it. One goal of this WP is to provide solutions to this problem. To this end, this deliverable
proposes initial solutions, which are based on three research approaches [1, 2, 3] of the WP members.
These approaches along with another complementary one [4] can be used to solve this problem in a joint
way. An explanation is given on how these research approaches can be used to solve the problem and
what is still missing.

1.2 Research Method

There are two different objectives for this deliverable. For this reason, the developed methodology to
address each objective was different:

• In order to provide the initial concepts for specifying and negotiating end-to-end quality, i.e. a
quality meta-model, the work carried out in this deliverable followed a design approach. Firstly,
requirements were collected dictating what information, structure, and constraints should be cap-
tured by the meta-model for service quality definition and negotiation. Then, these requirements
were prioritized, filtered or extended, and structured into a coherent ordered and structured set.
This set of requirements is materialized in section 2. Next, based on these requirements, an initial
version of the meta-model was designed and developed. This meta-model was revised based on
the requirements and the comments of the WP partners and took the final form that is highlighted
and analyzed in section 3.

• In order to propose a methodology for decomposing end-to-end quality into quality specifications
for individual SLAs, the work carried out in this deliverable followed both a proof-of-concept and
a paper-based approach. To explain, the meta-model’s effectiveness and sufficiency is highlighted
by modeling a composite service negotiation scenario and its result, which is a decomposition of
end-to-end quality into quality specifications of individual SLAs. Then, initial attempts (materi-
alized in partner papers) are provided that can address composite service negotiation jointly and

External Final Version 1.3, Dated June 16, 2009 7

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.3

thus give the solution to this WP’s objective. Both of these approaches of our end-to-end quality
decomposition methodology are analyzed in section 4.

1.3 Relation to the WP Challenges

In the following, we give a short summary of the research challenges in WP JRA-1.3 that concern the
three main activities in the life-cycle of electronic contracts and then explain how this deliverable is
related to them.

1. For the Quality definition (contract definition) activity, the overall research challenge is modelling
of end-to-end quality for service-based applications, which is decomposed in the following re-
search challenges:

(a) End-to-End Quality Reference Model: In order to support end-to-end quality provision, we
will aim at making the dependencies between different kinds of quality attributes explicit. In
addition, we aim at understanding the dependencies between quality attributes at the same
and different functional levels. One key means to achieve the above objective is to achieve
a shared understanding of quality attributes between the S-Cube layers and disciplines by
defining the S-Cube Quality Reference Model.

(b) Rich and Extensible Quality Definition Language: We plan to develop a quality definition
language, which allows describing every relevant aspect of quality for services and SBAs,
including metrics, units, measurement functions and directives, constraints, value types, etc.
In addition, this quality definition language will encompass a rich set of domain-dependent
and global quality attributes (i.e, the ones referenced in the S-Cube Quality Reference Model)
and will be extensible so as to allow the addition of new quality dimensions when needed.
Further, this quality definition language will be semantically enriched – where feasible – to
be machine-processable or machine-interpretable. Finally, this language must be applicable
in complex SBAs, in which services can be invoked and composed with variable quality pro-
files. So, it must be capable of expressing quality capabilities and SLAs by using functions,
operators and comparison predicates on quality metrics. It should also allow the description
of composition rules for possible combinations of composition constructs and quality met-
rics. These rules can be used for aggregating the individual quality levels of the services
involved in a service composition in order to determine and thus ultimately check end-to-end
quality.

2. For the Quality negotiation and agreement (contract establishment) activity, the overall research
challenge is Techniques for Automated and Proactive Quality Contract Negotiation and Agree-
ment, which is decomposed in the following research challenges:

(a) Exploiting user and task models: One key research objective regarding quality contract es-
tablishment is to exploit user and task models (please see deliverable PO-JRA-1.1.3), which
codify user preferences and characteristics, in order to devise advanced automated negotia-
tion techniques and protocols. Those advanced techniques could lead to service negotiators
(e.g., autonomous components provided as core services) that perform the negotiation pro-
cess on behalf of the service consumers (requestors) and providers.

(b) Proactive SLA negotiation and agreement: Based on the envisioned advances in automated
negotiation, we aim to address the current state-of-the-art limitations by starting negotiation
when there is evidence that the need for deploying a new service and/or change the conditions
of deploying a current service is likely to arise but has not arisen yet. Thus, our proactive
negotiation approach is based on forecasting at run-time a number of factors related to the

External Final Version 1.3, Dated June 16, 2009 8

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.3

deployment of services. The availability of accurate forecasts can lead to effective proactive
run-time negotiation strategies for service clients.

3. For the Quality assurance (contract enactment) activity, the overall research challenge is Novel
run-time techniques for predicting quality attributes, which is decomposed in the following re-
search challenges:

(a) Run-time Quality Assurance Techniques: S-Cube will investigate how standard and consoli-
dated offline software quality assurance techniques can be extended to be applicable while the
application operates. In addition to extending the quality assurance techniques to the opera-
tion phase, synergies between the different classes of analytical quality assurance techniques
will be exploited.

(b) Quality Prediction Techniques to Support Proactive Adaptation: To support the vision of
proactive adaptation, novel quality prediction techniques need to be devised. Depending on
the kind of quality attribute to be predicted, these can range from ones that built on traditional
techniques to ones that exploit modern technologies of the Future Internet.

In this deliverable, we deal with challenge 1b by designing and implementing a rich and extensible quality
definition language, i.e., a service quality meta-model. Moreover, we deal with challenge 2a and partially
2b by analyzing a research approach [1] that defines and exploits user and task models and two other
research approaches [2, 3] that advance the state-of-the-art in service contract negotiation and agreement.
In addition, challenge 2a is also addressed in the meta-model, where specific concepts like negotiation
strategies, cost and service selection models, quality capabilities and requirements, negotiable quality
attributes and metrics represent information which is explicitly modeled but can also be drawn from
user and task models. This information will be the basis for devising advanced automated negotiation
techniques and protocols.

External Final Version 1.3, Dated June 16, 2009 9

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.3

Chapter 2

Requirements for the S-Cube Quality
Modeling Language

Before starting this section, we must first explain that a service quality description model is a meta-model
and not a model. The difference between a service quality meta-model and a service quality model is that
the former contains those language concepts that are required for specifying quality attributes and other
quality entities across all service layers (BPM, Service and Infrastructure), while the latter is a conceptual
model or taxonomy that contains selected, concrete quality attributes and other concrete quality entities.
For example, the S-Cube Quality Reference Model is a service quality model. In some cases, the service
quality model can also contain specific dependencies between quality attributes. A service quality meta-
model is implemented by a service quality specification language that is used to create and specify a
service quality model.

The service quality meta-model that has to be developed should be reusable across the service life-
cycle, especially for the service discovery and negotiation activities. For this reason, the meta-model’s
design was based on a set of requirements collected from these two activities. Concerning quality-based
service discovery, after studying and processing several research efforts, Kritikos and Plexousakis [5]
have come up with some general and specific requirements that this service quality meta-model must
satisfy. These requirements have been refined and extended with requirements affecting the negotiation
of SLAs in order to produce the final collection for the service quality meta-model. An analysis of these
requirements is given below.

2.1 Extensible and Formal Service Quality Model

In the presence of multiple services with overlapping or identical functionality, service requesters need
objective quality criteria to distinguish one service from another. It is not practical to come up with
a standard service quality model that can be used for all services in all domains [6]. This is because
quality is a broad concept that can encompass a number of context-dependent non-functional properties
such as privacy, reputation and usability. Moreover, when evaluating quality of services, domain specific
criteria must be taken into consideration. For example, in the domain of phone service provisioning, the
penalty rate for early termination of a contract and compensation for non-service, offered in the service
level agreement are important quality criteria in that domain. Therefore, an extensible service quality
model must be proposed that includes both the generic and domain specific criteria. In addition, new
domain specific criteria should be added and used to evaluate the quality of services without changing
the underlying computation (i.e., matchmaking and ranking) model. Finally, the semantics of quality
attributes/concepts must be described in order to ensure that both service provider and consumer talk
about the same quality attribute/concept. Sometimes, generic quality attributes with the same name like
“application availability” may have different meanings to the parties that describe them (network level of

External Final Version 1.3, Dated June 16, 2009 10

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.3

the hosting system, application that implements the service) or they may be computed differently. Other
times, domain-dependent quality attributes may have a different name but obviously the same meaning.
So it is important to describe quality attributes/concepts not only syntactically but also semantically in
order to have a better discovery (matchmaking) process with higher precision and recall.

2.2 Syntactical Separation

Service quality specifications should be syntactically separate from other parts of service specifications,
such as interface definitions (WSDL). This separation allows the specification of different quality proper-
ties for different implementations of the same interface [7]. Moreover, while functional constraints rarely
change during runtime, quality constraints do change quite often. So the separation of service quality
offerings from WSDL descriptions enables that, if needed, service quality offerings can be deactivated,
reactivated, created, or deleted dynamically according to the change of quality without any modification
of the underlying WSDL file [8]. Last but not least, a service quality offer could be referenced from
multiple WSDL files and thus be reused for different services [9].

2.3 Both Client and Service Quality Specifications

It should be possible to specify both the quality properties that clients require and the quality properties
that services provide [7]. Moreover, these two aspects should be specified separately so that a client-
service relationship has two quality specifications: a specification that captures the client’s requirements
and a specification that captures the service’s offering. This separation allows us to specify the quality
characteristics of a component, the quality properties that it provides and requires, without specifying
the interconnection of components. The separation is essential if we want to specify the quality charac-
teristics of components that are reused in many different contexts.

2.4 Refinement of Service Quality Specifications

As previously described, syntactical separation provides reusability. Apart from reusability, another form
of extensibility is equally important; service quality specifications should not only be reused but also be
refined. Refinement means creating a new service quality offering by referencing an older one and by
adding constraints like refinement of an older quality restriction or creation of a new one [7, 10]. In
addition, templates of service quality offerings can be created, usually for every application domain [7,
11].

2.5 Fine-Grained Service Quality Specifications

It should be possible to specify quality properties at a fine-grained level [7]. As an example, performance
characteristics are commonly specified for individual operations. As another example, the data policy
dimension is applicable to arguments and return values of operations. A service quality model must allow
service quality specifications for the service, its interfaces, operations, attributes, operation parameters,
and operation results. Generally speaking, any service object can have quality attributes (e.g., elements
defined in WSFL [12]) [13]. Moreover, as a service can be composite and composite services are actually
Service Based Applications (SBAs), we also capture the requirement that quality should be defined for
both the SBA (i.e., service) and its constituent services (which are actually external operations for the
SBA/service).

External Final Version 1.3, Dated June 16, 2009 11

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.3

(a) Conformant (b) Non-conformant

Figure 2.1: Conformance in asymmetric models

2.6 Symmetric Model of Service Quality Specifications

In [14], it is endorsed that a symmetric model of QoS specification must be adopted. The reason for this
lies beneath.

2.6.1 Asymmetric Models

Let S be a multidimensional space whose dimensions are given by domains of quality parameters. Tra-
ditionally, a demand (δ) has been viewed as a subspace in S, whereas an offer (ω) has been viewed as a
point in S. Thus, checking the conformance amounts to checking whether the point (the offer) belongs
to the subspace (the demand) or not. See Figures 2.1(a) and 2.1(b), respectively. This checking can be
computed easily by evaluating ω in δ. As an example, if a service owns the offer ω = {MTTF = 120},
then it is conformant to the demand δ1 = {MTTF ≥ 100} because 120 ≥ 100, but not to the demand
δ2 = {MTTF > 120} because MTTFδ2 > MTTFω. It must be noted here that the variable MTTF
represents the Mean-Time-To-Failure metric measuring Reliability [15].

This interpretation of conformance results in a model which is asymmetric with regard to the ex-
pressiveness of service quality specifications. This semantics makes it very difficult to specify offers
when it is needed something else than a point, as an example to specify some uncertainty or a space.
However, checking space inclusion is harder and this is the reason most proposals have opted for the
point inclusion method. As well, these approaches with an asymmetric model usually own a limited
expressiveness because conditions are restricted to simple expressions involving single parameters, so
complex expressions are not allowed.

2.6.2 Symmetric Models

Alternatively, an offer can be also considered as a sub-space, just as demands, so that it represents the
ranges of quality-of-service values that the corresponding service guarantees to supply. In this way, an
offer (ω) is conformant to a demand (δ) whenever the offer’s sub-space is inside the demand’s sub-space
(see Figure 2.2(a)), otherwise the offer is not conformant (see Figure 2.2(b)). As an example, if a service
owns the offer ω = {MTTF ≥ 120}, then it is conformant to the demand δ1 = {MTTF ≥ 100}, but
not to the demand δ2 = {MTTF > 120} because the offer’s instance value {MTTF = 120} is out of
the demand’s space. It must be noted that in this example the offer does not satisfy the constraint of the
second demand. However, the offer may partially match the second demand if it respects some of the
demand’s constraints. In this way, the violation of one constraint of the service quality demand does not
condemn a service quality offer to be totally rejected from the useful results of the quality-based service
matchmaking process.

External Final Version 1.3, Dated June 16, 2009 12

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.3

(a) Conformant (b) Non-Conformant

Figure 2.2: Conformance in symmetric models

Continuing the previous example and analysis, sometimes the bounds of service quality specifications
have to be defined softly and not crisply (e.g., when the bounds are based on measurements which entail
a measurement error). So, this case, where the offer is ω = {MTTF ≥ 120} and the demand is
δ2 = {MTTF > 120}, should not result in a rejection of the offer, as the bound of the demand can entail
a small but important measurement error. One way to solve this problem is to introduce weights to the
“doubtful” bounds signifying their confidence and techniques like semiring-based constraint satisfaction
can be used to perform the matchmaking.

The above interpretation of conformance results in a symmetric model because service quality in
demands and offers can be specified in the same way. These semantics make the offer guarantee the
complete range, not only a concrete value, i.e., we can not make any assumption on a concrete value,
because it is equally possible any value in the subspace, and there is no control to get a concrete value.
As well, symmetric approaches usually achieve a greater deal of expressiveness to specify quality-of-
service, since there is usually no restriction on the number of involved parameters or type of operators,
so that non-linear or more complex expressions are allowed. Finally, it must be noted that the asym-
metric models are particular cases of the symmetric models, if the upper and lower bounds of all quality
attributes or metrics coincide in the symmetric approach.

2.7 Relevant Aspects for Service Quality Attributes Models

A service quality attributes model is a part of a service quality model referencing a set of concrete
quality attributes and their metrics. For each domain, the attributes in that domain are important inputs
to the overall quality of a service. Some attributes are common across domains and some are specific to
domains. Each quality attribute is measured with the help of one or more quality metrics. Each attribute
and metric must have the following aspects [16, 17, 15].

2.7.1 Basic Aspects

Associated Attributes and Concepts

Unique names Quality attributes and metrics should have unique names in their domain. This does
not prevent attributes from having different names in different domains but imposes the constraint that
they should have a unique name only in their domain. Domain-independent attributes should also have
unique names. When this naming constraint can be overridden, then equivalence rules should be defined
that infer the equivalence of the same but differently named quality attributes or metrics.

External Final Version 1.3, Dated June 16, 2009 13

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.3

Weight The weight of the attribute or metric relative to its domain and user preferences. This weight
can also help in calculating the rank of a service quality offering.

Domain The domain that this attribute or attribute belongs to. For instance, is it a cross-domain at-
tribute or an attribute specific for a domain?

Functional level The functional level that this attribute refers to. There can be three different levels: a)
business, b) application or service, and c) infrastructure/resource, which actually represent the functional
layers introduced in the S-Cube project. At each of these three levels, different quality attributes are
usually present. For example, in the application level we have availability and reliability, while in the
resource level we have memory usage and available bandwidth. However, there are also attributes that
are common in some levels so service quality specifications should clearly distinguish between them
by stating the level that they refer to. For example, the availability of the service is different from the
availability of the resources it uses although it depends on it.

Metric value type A metric should have a value type indicating its allowed value range. For instance,
a metric such as failure rate measuring availability can be expressed by the set [0.0,1.0]. The MTBF
(Mean Time Between Failures) metric measuring reliability can be instead expressed with an integer in
[0,365].

Measurement scale The meta-model should allow to specify the measurement scale of quality metrics.
A measurement scale controls the value type and the type of operations allowed for a metric. It also
specifies indirectly the way one value expression bound to one scale can be transformed to another value
expression of another compatible scale (both scales belonging to the same metric). So specific scales
can be compatible if they belong to the same scale type and there is a scale transformation function that
transforms their expressions into each other. A scale can be categorized into five types: nominal, ordinal,
interval, ratio and absolute [18]. Nominal scales concern metrics that have as value type a set of unrelated
numbers or strings. The members of this set cannot be compared (no ordering). Specific nominal scales
can be compatible if there is a one-to-one mapping function between their corresponding value types.
Ordinal scales apply to metrics that have an ordered set as value type. Metrics belonging to different
ordinal scales cannot be added, multiplied, divided or subtracted in QoS constraints. We can transform
one ordinal scale expression into another one with the help of monotonic functions. Interval scales
preserve not only ordering but also differences. However, they do not preserve ratios. The operations of
addition and substraction are allowed between different interval metrics. We can transform one interval
scale expression into another one with the help of affine transformation functions of the form: M =
a ∗M ′

+ b. Ratio scales preserve ordering, size of intervals and ratios. In a ratio scale there is always a
zero element representing the total lack of the measured attribute. All arithmetic operations are allowed
between different ratio metrics. We can transform one ratio scale expression into another one with the
help of mapping functions of the form: M = a ∗M ′

. Finally, the following facts are true for an absolute
scale: a) measurement is made simply by counting the number of elements in the measurement set; b)
measured attribute takes the form: “num of occurrences of x in the entity”; c) all arithmetic analysis is
meaningful; d) the set of acceptable transformations between different absolute scale expressions is the
identity transformation function.

Metric’s ordering function The characteristic of the function from metric values to overall quality val-
ues. For instance, some metrics such as the one measuring availability are monotonic, at least in typical
business scenarios. That is, the more the metric of availability increases the better. As far as negotiation
is concerned, quality metrics should have at least a partial ordering relation among their values [1]. So
monotonic metrics are already appropriate as monotonicity is harder than partial ordering. Thus, the

External Final Version 1.3, Dated June 16, 2009 14

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.3

partial ordering requirement should be true for every non-monotonic metric. As an example of partial
ordering, for a metric measuring availability we can have the situation that specific set of values are
mapped to different quality levels, e.g. ql([0.9, 0.95)) = 1 < ql([0.95, 0.99)) = 2 < ql([0.99, 1.0]) = 3
where ql is a function mapping a set of values to a finite set of quality levels.

Metric’s temporal characteristic Each metric’s value is measured at a specific time-point so it should
be associated with a timestamp. With this timestamp it will be possible to reason about which metric
values are more recent than the others, as newer values should influence the values of statistical metrics
(e.g., for average availability) more than older ones. Moreover, the values of a metric that are measured
at a specific time interval of the day (e.g., values gathered at 17:00-18:00 every weekday) should be
associated with each other in order to reveal trends in service performance as the service load can be
specific at this time interval.

Properties

Dynamicity of quality metrics The meta-model should specify whether the value of a quality metric is
constant or varies with respect to the environment of the service. In the former case, the metric is static.
As an example, the MTBF metric measuring a service’s reliability usually remains constant as it depends
on the service’s host machine and the service implementation. In the later case, the value of the metric
should be computed with respect to the change in the environment. For instance, a service’s availability
changes very frequently and depends on many environmental factors like the service demand.

Measurability of quality attributes Quality attributes can be measurable or unmeasurable. Measur-
able attributes are measured by quality metrics. For example, response time can be measured by a metric
averaging the individual response times of a service in a specific time space. Unmeasurable attributes
can not be measured. For instance, the security model attribute (i.e., defining the exact security model
supported by a service) has a fixed value before service execution and is not measurable. However, these
quality attributes have a specific value type and can have an ordering function that provides a partial
ordering between the values they take.

Controllability of quality attributes or their metrics The meta-model should allow to specify the
attributes that are not under control of the service provider and that may affect the quality of the offered
service. For example, in case of services accessed over the Internet, service quality must be affected by
the network properties and the service provider may not have any control over these properties. In this
case, the service provider makes a special agreement with a network provider in order to cater for the user
requirements regarding response time or other network-dependent and uncontrollable quality properties.
For the above reason, quality attributes should be distinguished between controllable and uncontrollable
ones.

Negotiability of quality attributes or their metrics [1] Not all quality attributes, either technical
or domain-independent, are negotiable. A quality attribute is negotiable if its value can be set by the
service provider at runtime. Non-negotiable quality attributes are the ones for which the value cannot
be set at runtime by the service provider. For example, when a service is invoked, its reputation is
fixed, regardless of the technique adopted for assessing reputation. Moreover, the service provider or
requester can always decide whether to allow or not the negotiation of a specific quality attribute. For
example, although response time can be considered as negotiable, it might be the case that a provider’s
provisioning infrastructure does not allow the adaptation of the value of this attribute based on the user
requirements.

External Final Version 1.3, Dated June 16, 2009 15

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.3

Aggregation

Inter-attribute dependencies An increase in a metric measuring availability is not always desired if it
comes in conjunction with reductions in the values for other positively-monotonic metrics of attributes,
as the overall quality might not improve. For instance, for a trip service, if the price of trips were to
decrease while the promptness (on arrival and departure times) metric were to become worse, then this
decrease in price might not help the overall quality of the trip service. The characteristics of metrics can
be quite rich and need to be further categorized. For this reason, dependencies between quality attributes
should be captured. There can be two types of dependencies: quantitative and qualitative. Quantitative
dependencies explicitly denote the way a quality attribute can be measured by one or more other quality
attributes and are usually expressed by formulas. For example, response time is computed by the addition
of network and service latency. Qualitative dependencies express empirical relationships between quality
attributes and often reflect the trade-offs providers make in their service implementations [19]. For
example, response time is negatively correlated to throughput, that is an increase in the former’s value
leads to a decrease in the latter’s value. Of course, qualitative dependencies can be characterized, in
some cases, by a stochastic quantitative dependency model (e.g. a function derived from empirical data
using regression) but this model would be different for every service. This is the main difference with
respect to quantitative dependencies, where the formulas apply to every service and are not specific for
each service.

Quality grouping Quality attributes could be grouped into Quality Groups. Quality Groups can con-
tain other Quality Attributes and Quality Groups. For example, quality attributes response time, latency,
throughput, execution and transaction time can belong to the performance Quality Group. As another ex-
ample, the performance Quality Group could be contained in the more general Quality Group of Runtime
Related Quality.

Aggregation formulas on different levels There must be a description (mathematical or otherwise
formal) of how a quality metric’s value of a complex service can be derived from the corresponding
quality metrics’ values of the individual services that constitute the complex one. For example, the
execution time metric TC of a complex service C, which is defined as a sequence of two services A and
B, can be computed as the sum TA + TB of the execution time metrics of the two individual services. This
description is essential for the automated estimation of the values of quality metrics for a complex service
that is composed of other services and individual operations. So this description is needed for automating
the service quality analysis process, a prerequisite for a successful quality-based service discovery. In
addition, it helps automating the service composition process and delaying individual service selection
as late as possible (i.e., at runtime).

2.7.2 Additional Aspects

The above aspects of quality metric description are not enough. Additional aspects must be developed.
In [20], it is described that there is a need for several semantic meta-models that would be used in
the formal representation of quality and other constraints. These meta-models include: quality metric
meta-model, measurement unit meta-model, measured properties meta-model and measurement methods
meta-model.

Metric Meta-model

We have already described what should be the content of a measured properties meta-model. In the
quality metric meta-model, a metric has a name and a short human-readable textual description. In
addition, the measured property (e.g. time, quantity of information, information transmission rate, etc.)
that the metric quantifies is referenced.

External Final Version 1.3, Dated June 16, 2009 16

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.3

Metric complexity Moreover, metrics can be composite or simple (resource). Examples of composite
metrics are: maximum response time of a service, average availability of a service, or minimum through-
put of a service. Examples of resource metrics are: system uptime, service outage period, or number of
service invocations. Resource metrics are directly measured from the instrumentation of the service’s
system through the use of Measurement Directives [13]. On the other hand, composite metrics can be
computed by other quality metrics with the help of a formula.

Metric’s measurement methods Each composite metric formula can contain mean, median, sum,
minimum, maximum, and various other arithmetic operators, or time series constructors. It should also be
accompanied by appropriate unit conversion rules. Measurement directives, formulas and unit conversion
rules are concepts that should be defined in the measurement methods meta-model.

Metric’s scheduling Keller and Ludwig [13] endorse that each formula must reference a schedule or
a trigger. A schedule defines the time intervals during which the formulas are executed to compute the
metrics, while a trigger defines a point in time to which the execution of monitoring activity can be tied.
The measurement directives and formulas should clearly specify the layers of the Service-Based System
where monitoring can be performed [4, 21]. E.g. the response time of service S can be measured at the
interface level of S, or it can be translated into properties of the infrastructure on which S is running (e.g.
required database queries, server load, and other properties can be captured from the infrastructure of S).

Invariant metric relationships According to [20], the semantic description of a quality metric can
also specify invariant relationships with other quality metrics, particularly those that measure the same
property. For example, “average response time” should always be less than or equal to “maximum
response time”. While such information is probably redundant, it is very important for quick and easy
discovery of conflicts. In general, when several quality metrics are specified in the same service offering,
checking various dependencies and relationships given in the ontology helps to avoid various conflicts.

Unit meta-model

The quality metric meta-model should be accompanied by an appropriate measurement units meta-
model. Such a meta-model should define three types of units: base units like “second” and “byte”,
multiples of base units like “millisecond” and “megabyte”, and derived units like “transactionsPerSec-
ond” and “bytesPerSecond”. Synonyms, including abbreviations, should be specified for all three types.
Semantic descriptions of all measurement units should contain information about what kind of quality
property is measured. When a measurement unit is used for a particular quality metric, one can check
whether the definition of the measurement unit and the definition of the quality metric refer to the same
measured property. The three types of measurement units differ in what additional information should
be specified in their semantic description.

Currencies Special types of measurement units are monetary units representing currencies, and units
derived from them. Examples are “CanadianDollars” and “CanadianDollarsPerHour”. Usually coun-
tries give a special name to 1/100 (or sometimes 1/1000) part of their currency (e.g., “CanadianCents”)
and this information should also be represented in the measurement units meta-model. Also, some mul-
tilingual countries have several synonyms (from different languages) for their currency. As exchange
rates between currencies vary, it is important to capture their dynamicity with appropriate constructs.
Thus, instead of specifying fixed formulas for converting between different currencies, a meta-model
could reference one (or maybe more) currency conversion services that can be consulted for up-to-date
conversions.

External Final Version 1.3, Dated June 16, 2009 17

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.3

Meta-model translations

According to Tosic et. al. [20], an important issue that must be raised is the development of indepen-
dent, third-party services for meta-model translations between different quality metrics, measurement
units, and currencies. For example, a service can provide quality guarantees using “average throughput
[invocations/s]” for a particular “number of invocations [invocations]”, while one of its consumers can
reason about quality using “average response time [ms]”. To understand each other, they have to per-
form a meta-model translation. However, in some cases services will not be able perform meta-model
translations themselves. For example, they might not understand the languages used to represent dif-
ferent meta-models. In such cases, the service or its consumer should consult a specialized external
meta-model translation service for help during the process of service offering negotiation.

2.8 Expressiveness and Correctness in Constraint Definitions

A service quality offer or demand (i.e. specification) must be comprised of quality constraints. The
basic representation of a quality constraint consists of a name, an operator, and a value [7]. The name is
typically the name of a quality metric, although it can also be the name of a metric aspect. The definition
of a metric aspect is given in the next paragraph. The permissible operators and values depend on the
quality metric type. A metric type specifies a domain of values. These values can be used in constraints
for that dimension. The domain may be ordered. For example, a numeric domain comes with a built-in
ordering (“<”) that corresponds to the usual ordering on numbers. Set and enumeration domains do not
come with a built-in ordering; for those types of domains we have to describe a user-ordering of the
domain elements. The domain ordering determines which operators can be used in constraints for that
domain. For example, we can not use inequality operators (“<”, “>”, “≥”, “≤”) in conjunction with an
unordered domain.

Apart from the above three parts that constitute each quality constraint, two further attributes should
be associated with quality constraints. The first should state if the constraint is hard or soft. The sec-
ond attribute models the weight of the constraint and signifies its importance. These two attributes of
constraints can be very useful in the service matchmaking and negotiation processes when there are
over-constrained quality demands and some of their quality constraints should be relaxed. Techniques
like Mixed-Integer Programming, Constraint Optimization and Semiring-Based Constraint Satisfaction
can be used for solving this problem [15].

Aspects are statistical characterizations of quality constraints like: percentile, mean, variance, and
frequency. They are used for characterization of measured values over some time period. For example,
the percentile aspect could be used to define an upper or lower value for a percentage of the measurements
or occurrences that have been observed. Aspects can be proved to be very useful in cases where we want
to guarantee that the measurements or occurrences of a quality metric present some special characteristics
and we do not want to produce a new complex metric from the basic quality metric for each of these
characteristics. However, they must be used carefully especially in cases where many aspects are created
for one metric.

Quality constraints are usually connected by the “and” logical operator, although they can also be
connected by other logical operators, into expressions. A service quality offer or demand should contain
one complete expression or just one constraint.

Quality constraints should be joined into Constraint Groups (CG) or Constraint Group Templates
(parameterized CGs) in order to be reused by many service quality specifications [8]. Other reusability
constructs can also be created even for expressions.

Based on the above analysis, a constraint definition model has a basic expressiveness if it uses at least
the basic constraint representation and the logical operator “and” to connect constraints into expressions.
If other constructs are used, like aspects, types of constraints, more logical operators and constraint
groups, then the constraint definition model is rich concerning its expressivity.

External Final Version 1.3, Dated June 16, 2009 18

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.3

A constraint definition model must enable the description of correct constraint specifications, where
correct means syntactic and semantic correctness of constraint expressions. Tools and techniques should
be used that must check this type of correctness (after the constraint model creation) or disallow the
wrong use of the constraint modeling constructs (during the constraint model creation) in order to assist
the service provider and requester in creating their quality specifications correctly.

2.9 Support for Multiple Classes of Service Specifications

Class of Service, which is also commonly known as service level (e.g, see [22]), means the discrete
variation of the complete service and quality provided by one service [10]. Classes of service make sense
to be discussed at the level of services and not at the level of constraints or guarantees (e.g. response
time) that are part of the overall service and quality. Classes of service can differ in usage privileges,
service priorities, response times guaranteed to consumers, verbosity of response information, etc. The
concept of classes of service also supports different capabilities, rights, and needs of potential consumers
of the service, including power and type of devices they execute on. Further, different classes of service
may imply different utilization of the underlying hardware and software resources and, consequently,
have different prices. Additionally, different classes of service can be used for different payment models,
like pay-per-use or subscription-based.

The issues of quality and balancing of limited underlying resources are particularly motivating for
having multiple classes of service for services. If the underlying resources were unlimited, all consumers
would always get the highest possible quality. Unfortunately, this is not the case, so it is reasonable to
provide different quality to different classes of consumer. Providers of services want to achieve maxi-
mal monetary gain with optimal utilization of resources. Providing different classes of service and their
balancing helps in achieving this goal because of the flexibility to accommodate several classes of con-
sumer. On the other hand, consumers of such services can better select service and quality they need and
are willing to pay for, while minimizing their price/performance ratio.

Providing classes of service is not the only possible way to customize constraints and management
statements that a service offers to its consumers. There are various alternatives, including custom-made
Service Level Agreements (SLAs), user profiles, parameterization, and separate ports. However, the
practice of telecommunication service provisioning shows that classes of service have relatively low
overhead and complexity of management.

From the above analysis, it is claimed that a service must provide multiple classes of service (i.e.
constraints and management statements). So it is important to have a description of class of service
included in the overall service description model. However, while the above discussion is interesting,
we limit ourselves to quality constraints only and we do not take into consideration other non-functional
constraints and management statements. Moreover, we consider that these other non-functional con-
straints and management statements are not very important to users as quality is, so they do not play
an important role in the discovery process. Therefore, we sustain that it is of great interest to service
providers that they provide multiple service quality offerings. In this way, they serve a wider range of
consumers and they broaden their market segment. In addition, service consumers can have a wider
solution space and (with the help of efficient quality-based discovery mechanisms) they can find the
best solution (combination of the functional capability of service and its service quality offering) that
minimizes their price/performance ratio. Thus, the service quality specification must support multiple
service quality offerings of the same service of a service provider, an idea also adopted by other research
efforts [9, 11].

External Final Version 1.3, Dated June 16, 2009 19

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.3

2.10 Support for Alternative Service Quality Demand Specifications

Similarly to the previous requirement and in accordance with the requirement posed in section 2.6,
service consumers should be allowed to specify alternative service quality demands. In this way, the
probability of matching at least one of the alternative demands of the service consumer with one of the
existing service quality offerings is increased. Moreover, service consumers can express a relaxation of
one of their service quality demands to cope with cases where the initial demand (not its relaxation) is
over-constrained (i.e, it cannot be matched with any of the existing service quality offerings). Finally,
the alternative demand specification supports the definition of quality aspects that a client requests with
respect to certain services (e.g., when using a service from a provider P, the client may accept to pay
more given that the client trusts this service; or when using a service to find airplane tickets the client
may tolerate a response time of X that it will not be tolerated if performing a banking transaction).

2.11 Other Useful Service Quality Information

A service quality offering should provide references to protocols needed for service management as
well as entries of third parties that one side would be willing to trust (see [9, 1] and WS-Policy [23]).
Moreover, a service quality offering must be related to the price element in order to relate the specified
quality level to the cost of service usage per invocation. Finally, a service quality offering must have an
expires attribute denoting the point in time until which the offer will be valid [9].

2.12 Negotiation-Specific Information

Apart from specifying which terms can be negotiated, how metric values are mapped to quality levels
and which protocols are supported by the service provider or requester for performing negotiation, there
is other equally important information that should be captured by the service quality meta-model. We
separate this information into three parts and we analyze each part in the different subsections of this
section.

2.12.1 Negotiation Actors and Roles

There are two different types of entities involved in a negotiation and a meta-model should make a clear
distinction between them [1]. The first type represents the physical entities involved in the negotiation
and these are the negotiation actors. These entities can be users or agents. Users delegate agents to
take a specific role in a negotiation and act on behalf of them. When all the participants of a negotiation
are agents, then the negotiation process can be fully automatic. Otherwise, it can be semi-automatic or
manual.

The second type represents the logical entities involved in the negotiation which are the negotiation
roles. These entities can be service providers or service requesters or brokers. Besides expressing capa-
bilities for participating in a negotiation protocol, service providers and requesters have the capability of
generating and evaluating offers within a negotiation. Conversely, brokers only expose capabilities that
do not involve the generation or evaluation of negotiation offers.

By introducing a distinction between actors and roles, a meta-model enables a negotiation actor to
take different negotiation roles in different negotiations. Let us consider the case of a user that requires
the functionality of a certain service to complete an application package that he or she would like to sell to
other potential consumers. In a first phase, the user takes the role of service requester and negotiates with
other service providers in order to obtain the missing functionality for his or her application package. In
a second phase, the same user takes the role of a service provider, looking for potential service requesters
for its application package.

External Final Version 1.3, Dated June 16, 2009 20

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.3

2.12.2 Negotiation Protocol

The negotiation protocol is the allowable sequence of messages exchanged used to negotiate and con-
clude (i.e., agree) a contract. In addition to defining the messaging behaviour the protocol should also
unambiguously define the semantics and format, or schema, of the messages. This schema will indicate
how both information relevant to the negotiation (e.g., the allocation of roles or the time allowed for
negotiation, see below) and the description of the quality metrics of the resources being negotiated for
should be rendered. To avoid confusion, the semantics of each message should also be formally defined;
an example of how this can be achieved with the WS-Agreement protocol is given in [24].

Note that prior to the negotiation taking place, it is essential that the potential participants in a nego-
tiation understand which/what negotiation protocol is supported. In order to determine this, techniques
such as ‘meta-negotiation’ [25] or use of the WS-Policy framework [23], can be used to establish the
negotiation protocol to be used in the negotiation proper.

2.12.3 Negotiation Strategy

The strategy of the participants (i.e service providers, requesters and brokers) involved in the negotiation
should be defined. This strategy could be defined in the form of a set of rules that specify when an action
like a generation of a new offer (i.e. service quality specification) or the acceptance or refusal of an offer
should be taken.

2.12.4 Cost model

From the provider’s point of view, the negotiation often relies on a cost model [1, 2], i.e., parameterized
functions that are used to evaluate the cost sustained by the service provider for giving a certain level of
quality in his or her service offers. Usually, cost models are additive [2], that is, the cost of a service
(quality) offer is given by the costs associated by the cost model to each single quality value (of a metric)
that appears in the offer. However, there will be cases that a service requester would also like to express
his cost model (not in such an expressive way as the provider’s one) instead of just a specific value
representing his budget. In this way, he will be able to accurately express which quality level should be
mapped to which price he wants to pay (less than or equal to his budget).

2.12.5 Exceptional conditions

The meta model should allow to specify the impact of exceptional conditions (e.g. denial of service, or
service hardware failure) on the quality of service offerings.

2.12.6 Penalties

The meta model should allow to specify the consequence of not meeting a quality of service offering.

2.12.7 Time Limit

The meta model should allow the specification of a limit of time that the negotiators are prepared to
negotiate, as well as maximum values or range of acceptable values for certain quality aspects.

External Final Version 1.3, Dated June 16, 2009 21

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.3

Chapter 3

The S-Cube Quality Meta-Model

This chapter defines the required concepts for specifying end-to-end quality characteristics, service qual-
ity specifications, and SLAs by providing and analyzing the S-Cube’s initial quality meta-model. This
meta-model is carefully designed based on the requirements set in the previous section. It is separated
into two main parts. The first part, named “Basic Quality Concepts”, is dedicated to analyzing all the
concepts required for defining service quality characteristics and metrics. This part stands as it is because
it can be used for creating taxonomies of quality attributes and metrics, providing in this way a standard
vocabulary of service quality terms that can be used in service quality contracts. Moreover, in this part of
the meta-model, dependencies between quality attributes and aggregation rules for inferring end-to-end
quality are modeled.

The second part of the meta-model, named “Quality Specification Constructs”, builds on the first
part by reusing some of its concepts in order to introduce the relationships that these concepts have with
those concepts needed for creating and also representing service quality specifications and SLAs. So,
the second part signifies not only how quality attributes and metrics can be used in order to populate
service quality specifications and SLAs but also those (possibly non-quality) concepts that are needed
in order to construct these specifications (e.g., contractors or third-parties, functional obligations, price,
and penalties). In the remainder of this chapter, these two parts will be analyzed in detail, in the next two
sections, by highlighting the main concepts introduced and their relationships.

3.1 Basic Quality Concepts

This section will be dedicated to analyzing the first part of the S-Cube’s quality meta-model that concerns
the definition of quality attributes and their related concepts. This part of the quality meta-model is
displayed in Fig. 3.1. The main concept of the meta-model is the one defining a Quality Attribute. This
concept has three main attributes, namely name, URI, and weight. The former two are used to uniquely
identify the quality attribute, while the third one signifies the importance of this attribute with respect to
the other quality attributes (either from a service provider or requester perspective).

Quality attributes can be distinguished between Domain Independent and Domain Dependent ones.
The former represent quality attributes that are common among all application/business domains (e.g.
response time), while the latter represent those quality attributes that are specific to an application domain
(e.g. covered area in the Traffic Monitoring application domain).

A quality attribute can be either Measurable or Unmeasurable. Unmeasurable quality attributes
cannot be measured at all. They represent static information about an entity which is qualitative in
nature. For instance, the selection of a security model among the security models supported by a service
is fixed before service execution and is not measurable. These attributes have a specific value type, they
are unit-less and concern a specific service object. However, they can have an ordering function that
provides a partial ordering between the values they take. Measurable quality attributes are measured
through the abstraction of Quality Metrics. The latter concepts will be analyzed later on in this section.

External Final Version 1.3, Dated June 16, 2009 22

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.3

Quality of Service (QoS) is a quality attribute sub-concept that represents those quality attributes that
can be measured objectively or they are unmeasurable but can take objective values. So, for example,
security attributes are QoS attributes but cannot be measured. However, the values that they take are
objective. QoS attributes are typical constituents of SLAs (e.g response time and availability). On
the other hand, Quality of Experience (QoE) represents those quality attributes that can be measured
subjectively or they are unmeasurable but can take subjective values. These quality attributes reflect the
perception of individuals or groups of service users (e.g reputation and usability).

Apart from QoS and QoE, other sub-concepts of quality attributes are the QoBiz and QoI [26]. QoBiz
represents those quality attributes that are relevant to the business process level and they usually affect
customer satisfaction and revenues. On the other hand, QoI represents those quality attributes that affect
the quality of the information used by the service (e.g. accuracy and completeness).

Quality attributes can also be distinguished between Functional and Non-Functional. Functional
quality attributes specify if a composite service behaves in a correct way (e.g. safety) and is interoper-
able (e.g. compatibility). On the other hand, non-functional quality properties are related more on the
performance (like performance attributes) and other non-functional aspects than the functionality of the
service.

Composite quality attributes (e.g. response time) are aggregated from other quality attributes, while
Atomic ones (e.g. capacity) cannot be decomposed at all. The aggregation can be based on a formula
for measurable quality attributes only. Other distinctive categorizations between quality attributes are
the following. Controllable attributes (e.g. execution time) are always under the control of the service
provider, while Uncontrollable ones (e.g. network latency) cannot be controlled by the service provider
and may affect the quality of the offered service. A quality attribute is Negotiable if its value can be
set by the service provider at runtime, while the values of Non-Negotiable quality attributes are specific
and cannot be set at runtime by the service provider. So the negotiability of a quality attribute usually
depends on the provider’s capability to change its value during runtime to satisfy user needs.

Quality attributes can be logically organized into Quality Groups. For instance, response time and
throughput are two quality attributes that belong to the Performance quality group. We have to note that
we did not introduce another term here called context, which was used in the CD-JRA-1.3.2 deliverable,
as it has the same usage and actual meaning as the Quality Group concept. Moreover, a quality attribute
refers to a specific Functional Level. There can be three different types of functional levels: business,
application and resource, and these levels are highlighted in the Levels enumeration. In this way, quality
attributes that have the same name but refer to different functional levels are distinguished. For instance,
a service’s availability is different from the availabilities of the resources it uses although it depends on
them.

One quality attribute cannot always be independent of all the other attributes. For example, through-
put and response time are negatively correlated. So there can be dependencies between them. This
knowledge is captured with the Dependency concept. There are two different relationships between
quality attributes and dependencies. The inDep relation is used to connect all of the dependencies of a
quality attribute with this attribute, while the member relation is used to connect those quality attributes
that have a specific dependency between them with this dependency. Dependencies can be Quantitative
or Qualitative. Quantitative dependencies contain a mathematical formula that expresses the way one at-
tribute can be computed from other attributes. For instance, response time is always computed by adding
network latency and service latency. Qualitative dependencies express empirical relationships between
two or more quality attributes. They express the impact of change of a value of one attribute with re-
spect to the new value that will be produced for the other attribute along with the direction (i.e., increase
or decrease) of this new value. Considering the previous example of the negative correlation between
throughput and response time, a small change in response time can produce a big (i.e., impact) negative
(i.e., direction) change in throughput. However, the impact usually differs from service to service.

The Quality Metric concept is used to capture all the appropriate knowledge needed for measuring a
quality attribute. The distinction between this concept and the Quality Attribute one is that if a quality

External Final Version 1.3, Dated June 16, 2009 23

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.3

Figure 3.1: Basic Quality Concepts

External Final Version 1.3, Dated June 16, 2009 24

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.3

attribute is measurable, then it can be measured by one or more quality metrics. For instance, reliability
can be measured by the metrics of Mean Time Between Failure (MTBF), Mean Time To Failure (MTTF),
and Mean Time To Transition (MTTT). If a quality attribute is not measurable, then it cannot be measured
by any metric. This concept consists of four main attributes, namely URI, name, monotonicity, and
weight. The first two attributes are used to uniquely identify the metric. The third one signifies the
monotonicity (positive or negative) of the quality metric, i.e. if the greater is its value the greater is the
quality offered. The fourth attribute represents the significance of the metric with respect to the other
metrics used to measure its quality attribute.

Each quality metric has (see hasType relation) a specific Value Type (i.e., domain of values) and is
applied on (see onElement relation) a specific Service Object (i.e., the service itself, its operations, its
input or output data, etc.). For instance, service response time can have as value type the integer set
[1, 10] and is applied on/concerns the service itself. The measurement values (see Metric Value concept)
of a metric are provided by a Measurement Party and have a specific timestamp attached to them to
enable reasoning about them (e.g. statistical derivation).

Quality metrics can participate in Metric Relations. These relations are qualitative in nature and are
derived from the qualitative dependencies of the corresponding quality attributes (that are measured by
the quality metrics of the relations). For example, consider the qualitative dependency between response
time and data accuracy. This dependency can have a medium impact (actually this impact depends on
the capabilities of the service’s hosting system) and a positive direction. Further, consider that the former
attribute is measured by an average metric and the latter with the Mean Absolute Percent Error (MAPE)
metric [15]. These two metrics can participate in a metric relation that has a medium impact and a positive
direction. Please note that the derived metric relation has a different direction than the dependency of the
corresponding attributes. This is due to the use of the MAPE metric which is negatively monotonic and
has opposite monotonicity from the one expected for the data accuracy attribute.

A quality metric can be Resource or Complex. Resource metrics (e.g. service status) are measured
by (see measuredBy relation) Measurement Directives directly from the instrumentation of the service’s
measurement system. Complex metrics (e.g. average availability) are computed from other metrics (see
producedBy relation) through the use of Metric Functions (see measuredBy relation). Metric Functions
take as input a list of arguments and produce as output an argument. An Argument can be a numeric value,
a metric, a measurable quality attribute, a metric function, or a numeric function. A special sub-concept
of complex metrics is Aggregated Metric used to represent those metrics that compute the aggregated
quality of SBAs (i.e., of service compositions).

Similarly to quality attributes, quality metrics can be controllable or uncontrollable and negotiable
or non-negotiable. Usually, if a quality attribute is uncontrollable or non-negotiable, then its metrics are
also uncontrollable or non-negotiable, respectively. However, the opposite is not true, so there can be
cases like the one where a quality attribute is controllable but one of its metrics is uncontrollable because
it is computed by a different party than the one that controls the metric’s attribute. These cases should be
captured by the meta-model.

Static Metrics are metrics whose values are computed once and remain almost stable during the
service’s lifetime. On the other hand, the value of Dynamic Metrics is regularly changing based on
a specific schedule. Moreover, the latter metrics should be related to the layers of the Service-Based
System where monitoring can be performed (see attribute layers).

According to the scale of measure they use, quality metrics can be distinguished into nominal, ordi-
nal, interval, ratio, and absolute metrics. Nominal Metrics have a value type which contains values that
have no specific ordering. Ordinal Metrics have value types that have a specific ordering in their values.
However, this ordering is not always machine-understandable and processable, especially in the case of
string-based value types, and ordering functions should be used to create a specific order between the
metric values (e.g. by mapping them to numbers). Interval Metrics have specific ordered value types
where the interval between any two consecutive values is always constant. Ratio Metrics contain ordered
value types that preserve not only the intervals but also the ratios between any two consecutive values.

External Final Version 1.3, Dated June 16, 2009 25

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.3

Both interval and ratio metrics are usually associated (through the hasUnit relation) with a Unit of mea-
sure. Absolute Metrics represent a special type of metric that takes the form: “num of occurrences of x
in the measurement set”.

Finally, Units have a specific name and abbreviation and a specific set of synonyms as attributes.
They are distinguished between Basic Units and multiples of units (MultipleOfUnit). The latter units are
produced from the former by multiplying a constant (magnitude). For instance, a value in ‘milliseconds’
can be produced from a value in ‘seconds’ by multiplying the latter value with 1000. Basic units are
further categorized into unique and derived. Unique Units (e.g. ‘seconds’) do not depend on other units,
while Derived Units do and can be produced from other units.

3.2 Quality Specification Constructs

This section will be dedicated to analyzing the second part of the S-Cube’s quality meta-model that
concerns the concepts needed for creating and representing service quality specifications and SLAs.
This second part builds on the previous part, as quality characteristics and metrics are used to define
constraints and service levels in service quality specifications and SLAs, respectively. The second part
of the quality meta-model is displayed in Fig. 3.2.

This section is separated into two subsections, where the first one is dedicated to analyzing the
concepts related to matchmaking, negotiation, and contracting (e.g., SLAs, penalties, quality offerings
and demands), while the second one is dedicated to analyzing the concepts related to quality specification
(e.g., constraints, KPIs, and predicates).

3.2.1 Matchmaking, Negotiation, and Contracting Information

The entities that actually create the service quality specifications and SLA documents are called Actors.
These actors can be Users, Companies, or Agents acting on behalf of other actors. Users have a name, title
and contact information as attributes, while other information for them (e.g. preferences) can be found on
User Profiles. All the information about companies can be found in the corresponding Company Profiles.
All of these actors can participate in service negotiations so they should have (see strategy relation) a
specific Negotiation Strategy. In the special case that an actor is an agent, this actor can enforce part of
or the whole negotiation strategy of its enabling actor.

Actors can take different Roles (see takesRole relation) in different cases. The roles that an actor can
take are those of the service Provider, Requester and Third Party. An actor can take many roles even at
the same time provided that these roles are not conflicting with each other. For example, a user cannot be
concurrently both a provider and requester for the same service. A Third Party can be a Broker (providing
service discovery facilities or mediating negotiations), a Measurement Provider or a Condition Evaluator
(evaluating SLA conditions).

Providers provide a Service and have a specific CostModel associated to this service (see relations
costModel and forService). A cost model consists of a set of CostFunctions that map a specific quality
attribute to a specific cost. The actual cost of the service is computed by adding these cost functions when
they are applied on the value of the quality attribute that is promised or delivered by the service. A service
can deliver a Service Object (e.g. a video or a data file) and both the service and its object have specific
Quality Capabilities. Quality capabilities are contained in service Quality Offerings which are service
Quality Specifications with specific time validity (this is crucial for highly dynamic environments where
quality is constantly changing). Moreover, quality capabilities are mapped into Service Levels which
are established in service Contracts after a successful service negotiation between service providers and
requesters.

Apart from service levels, contracts contain other important information like the time validity, the
penalties that will be enforced when the contractors do not correctly fulfill their obligations (e.g. the
service of the provider deviates from the required service level), and the exceptional conditions that can

External Final Version 1.3, Dated June 16, 2009 26

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.3

happen during service execution and the corrective actions for these conditions. Especially, the penalties
of a contract are both associated to a quality constraint and to the cost of the constraint’s violation. A
contract’s contractors (see contractor relation) are the service provider and requester, while there are
also other Third-Party entities that play an important role like the measurement providers (that provide
instantiations of quality metrics), the condition evaluators (that check if a service level condition that
includes a quality metric is violated), or the brokers (that perform service discovery or mediate in service
negotiations).

A special type of contract is that of a Composite Contract. Composite contracts are used to represent
contracts between a composite service provider and a requester. The fact that makes them special is that
they depend on and consist of other contracts which are agreed between the composite service provider
and the service providers of the component services of the composite service.

Requesters seeking for a specific service usually have a specific budget which is actually a Cost
associated to a specific currency. These actors also have a specific Quality Selection Model and specific
Quality Requirements expressed in service Quality Demands. Both the quality selection model and the
quality demand are expressed inside a service Quality Request which is issued by the requester to a
Broker or matchmaking engine in order to find the best service that fulfils his/her needs. A quality
selection model contains a set of <quality attribute, weight> pairs that specify the importance of each
quality attribute for the requester and how the best service should be selected. A service quality demand
is actually a service quality specification.

3.2.2 Quality Specification Information

Both service quality capabilities and requirements are expressed in the same way through the use of
Rules or Constraints (see expressedBy relation). The constraints can be simple, complex or KPIs. Simple
Constraints take two Arguments that are compared based on a specific Comparison Predicate. Moreover,
each simple constraint is either hard or soft (see hard attribute) and has a specific weight that signifies its
importance. The latter two attributes can be very useful in the matchmaking and negotiation processes
when there is no service quality offering that completely satisfies the service quality demand so some
of the constraints of the service quality demand should be relaxed. Complex Constraints contain a list
of constraints (Constraints List) and they apply a specific Constraint Predicate on this list. KPIs are a
special kind of constraints that apply a specific formula to one or more Process Performance Metrics
(which are quality metrics) in a specific analysis period. The outcome of the KPI’s formula application
is compared with an upper or lower bound value in order to infer the satisfaction of this KPI.

Finally, the last analyzed concept is the one of Predicates. Predicates can be n-ary, binary or unary
according to the number of arguments (i.e., arity) on which they apply. Constraint predicates can be of
any arity, while comparison predicates can be only Binary Predicates.

External Final Version 1.3, Dated June 16, 2009 27

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.3

Fi
gu

re
3.

2:
Q

ua
lit

y
Sp

ec
ifi

ca
tio

n
C

on
st

ru
ct

s

External Final Version 1.3, Dated June 16, 2009 28

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.3

Chapter 4

End-to-End Quality Decomposition
through Service Negotiation

In this section, we attempt to solve the difficult problem of decomposing end-to-end quality, as it is
defined in a composite service quality specification, into individual service quality of the component ser-
vices (of the composite service) embodied into service quality specifications and SLAs. This is dictated
by the second objective of this deliverable. The approach that is followed is that an instance of this prob-
lem is solved by mapping it into a composite service negotiation scenario. Through this scenario, the
use of the previously introduced quality meta-model is highlighted, while an incomplete solution to the
particular instance of the problem is given. The solution relies on combining the research work already
performed by the WP partners on service quality negotiation.

This section is organized into two main sections. The first section explains the problem and which
instance of it we attempt to solve, while also highlights the use of the meta-model. The second section
provides an extended summary of the research works already performed by the WP members for service
negotiation and explains how they can be combined in order to address the instance of the problem we
want to solve.

4.1 Problem Instantiation and Meta-model Usage

4.1.1 Problem Instantiation

The second objective of the deliverable dictates that an approach for decomposing end-to-end quality into
quality specifications for individual SLAs has to be developed. In order to better explain and cope with
this quality decomposition problem, we take the following view: Supposing that there are end-to-end
quality requirements requested by a service requester, a composite service provider has to assure that the
end-to-end quality offered by his service and maybe agreed with the service requester is guaranteed. So,
actually, the end-to-end quality decomposition problem is an instance of end-to-end quality assurance,
as the composite service provider has firstly to decompose the end-to-end quality into individual service
quality of the component services and then to ensure that the individual service quality does not deviate
in order to assure the end-to-end quality of his composite service. Thus, in the end, the composite service
provider has to negotiate with many service providers – which have services that match the component
services of the composite service – the individual service levels of the component services in order to
assure that the end-to-end quality of his composite service is guaranteed. The latter form of negotiation
will be from now on called Composite Service or Contract Negotiation, while its successful result will
be called Composite Contract. In this type of contract, both the agreed composite and individual service
levels are defined.

While the problem of decomposing end-to-end quality into quality of component services has been
dealt with successfully by many research attempts that solve the well-known Service Concretization or

External Final Version 1.3, Dated June 16, 2009 29

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.3

QoS-aware Service Composition problem (see deliverable PO-JRA-2.2.1), the composite service nego-
tiation problem sketched above has not been completely addressed by the research community [27]. We
believe that the latter problem is very important and even more crucial, bigger, and complex than the
Service Concretization problem which gives static and sometimes outdated or invalid solutions. In fact,
the Service Concretization problem is a sub-problem of the composite service negotiation problem be-
cause the former has to be solved in order to find the solution of the latter. To better explain, a Service
Concretization problem is solved in the very beginning of the composite service negotiation in order to
decompose end-to-end quality and initiate the individual service negotiation. Then if an individual ser-
vice negotiation fails, then it has to be solved again or re-negotiation at the higher level must take place
before it has to be solved again. The overall goal is to produce a composite contract that will drive the
execution of the composite service and its constituent services.

As it can be seen from the above analysis, composite service negotiation is a very novel and complex
problem. The complexity lies on the fact that many different service negotiations take place at two
different levels (for the composite service and its component services) and depend on each other. So the
result of one negotiation may have a significant effect on the result of the other negotiations. In order to
deal with this problem, new techniques have to be devised or other techniques from other research fields
have to be explored (e.g. hierarchical transactions). While the goal of this WP is to propose a solution to
this problem, it is difficult to reach a good and complete solution in a very short time. To this end, this
deliverable does not propose a complete solution but sketches how four research approaches [1, 2, 3, 4]
of the WP partners can be jointly used to solve this problem. The sketched solution is analyzed in the
next section.

4.1.2 Meta-model Usage

In this subsection, we analyze how the developed quality meta-model can be used to model an example of
a composite service negotiation. In this way, we follow a proof-of-concept approach in order to show the
effectiveness and adequacy of the quality meta-model. Firstly, we start explaining this example, which
is drawn from the Wine Production case study (see deliverable CD-IA-2.2.2), and then we show how the
meta-model concepts can be used to model all the appropriate information.

Example explanation

Based on the Wine Production case study (see deliverable CD-IA-2.2.2), we consider that the Quality
Manager is a user requester R that has to detect critical conditions for one of the vineyards of the Wine
Producer and to take appropriate actions. This user needs specific information like the temperature of
a specific region of the vineyard in a fast and accurate way by a service that could be executed several
times each day. Suppose, now, that there is a Vineyard Forecast composite service S provided by a service
provider (SP) SP , which takes as input the region to inspect and the critical temperature and produces
as output the sub-regions that have a temperature below the critical temperature and the accuracy of the
result. This service consists of three operations/services: Weather Forecast S1, Vineyard Sensor Network
S2, and the Accuracy Resolver S3 services. The first two services are executed in parallel, while the third
one is executed after the end of the execution of the first two services. The first service takes as input
the region and provides the temperature that it predicts with the appropriate accuracy, while the second
service takes as input the region and the critical temperature and produces a list of sub-regions that have
a temperature lower that the critical temperature and the accuracy of the result. These two services have
to be provided externally and there are two SPs SP1 and SP2 that can provided them, respectively.
The third service takes a input the output of the second service, filters the sub-region set based on the
predicted temperature of the first service (if there are contradictions so a faulty sensor reports wrong
information), and produces the accuracy of the final result. This service is implemented internally by the
Vineyard Forecast SP.

External Final Version 1.3, Dated June 16, 2009 30

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.3

Let us now suppose that all participants express service quality specifications in terms of three quality
metrics: a) average response time art (expressed in seconds and having as value type the integer set
[1,5]), b) minimum availabilitymav (having as value type the real set [0.0,1.0]), and c) average accuracy
acc (having as value type the real set [0.0,1.0]). Both the SP and R express that the requested service
would provide the following capabilities: art >= 1 and art <= 7 and mav >= 0.99 and acc >= 0.8.
Both SP1 and SP2 express the following capabilities: art <= 1 and art <= 5 and mav >= 0.995
for their services. Moreover, for service S1 we have that acc >= 0.8, while for service S2 we have
that acc >= 0.9. In addition, the SP knows that his internal service S3 has the following capabilities:
art <= 1 and art <= 2 and mav >= 0.99999 and acc >= 0.85. It is easy to see that if SP
chooses to implement his composite service’s tasks with the services of SP1 and SP2, then the quality
capabilities of his service would be guaranteed. So a composite service negotiation takes place between
all the participants that results in a composite contract that depends on two other contracts which are also
generated.

Meta-model Conceptualization of the Example

The average response time metric measures the quality property of response time. In our case, this
property is an instance of the QoS, Measurable, Negotiable, and Controllable concepts and refers to the
Service/SBA functional level. The same goes for the availability quality property which is measured
by the minimum availability. However, response time belongs to the Performance Quality Group, while
availability belongs to the Reliability quality group. Finally, the average accuracy metric measures
the quality property of accuracy, which belongs to the Data Quality quality group and refers to the
Service/SBA functional level.

Concerning now the metrics, average response time is an instance of Dynamic, Complex, Ratio,
Controllable, and Negotiable classes and is applied on the service Service Element. The same goes
for the minimum availability metric. However, average response time is measured in seconds (instance
of Unit class), while minimum availability is measured as a percentage. Finally, the average accuracy
metric is instance of Dynamic, Complex, Ratio, Uncontrollable, and Non Negotiable classes and is
applied on the operation result Service Element.

Now, the Composite Contract instance CC1 that will be produced will have as contractors the SP
and R participants (instances of the class User). The former takes the role of the Provider, while the
latter takes the role of the Requester. The SP provides service S that is an instance of the Service
class and has a specific Quality Capability QC that is mapped to a specific Service Level SL inside
the CC1 contract. QC will be expressed through an instance of a Complex Constraint, which will be
composed of a list of fourSimple Constraints applied on the and Constraint Predicate. The first two
simple constraints of the list will be referring to the average response time metric and will have specific
comparison predicates and numeric values, while the third simple constraint will refer to the minimum
availability and will have the>= comparison predicate and the numeric value of 0.99. The fourth simple
constraint will refer to the average accuracy and will have the>= comparison predicate and the numeric
value of 0.80.

The other two created contracts will be an instance of the Contract class and will have as contractors
the SP and the SP1 or SP2 users, respectively. In these contracts, SP takes the role of Requester while
the other users take the role of the Provider. The contracts are populated in the similar way concerning
the remaining terms as with the composite contract. Moreover, the composite contract will depend on
these two contracts (i.e. the depends on relationship is used to connect the contract instances).

4.2 Initial approaches for negotiating composite SLAs

In this section, a solution to the composite service negotiation problem that combines three research
approaches of the WP members is provided. First of all, in the first subsection, the solution is sketched,

External Final Version 1.3, Dated June 16, 2009 31

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.3

while it is shown how one complementary – with respect to the three WP member research approaches –
approach [4] can be used to support this solution. Then, in the remaining subsections, the three research
approaches of the WP members are analyzed, while a justification of how they can be utilized in the
proposed solution is given.

4.2.1 Solution

First of all, we suppose that a functional and quality-based discovery process has been executed by a
broker and has inferred that there is a match between the service capabilities of the composite service
and the service requirements of the service requester. Then, both the composite service provider and
requester are engaged in a hierarchical and composite contract negotiation process which is carried out
either by the broker or by the composite service provider’s system. Our analysis supposes the existence
of the broker that carries out the solution process.

The broker gets the quality capabilities and requirements of the two participants in the SBA level
along with their negotiation capabilities and examines if there exists a broker-based negotiation protocol
that can be enacted to start the negotiation between the two participants. If not, then the composite
negotiation fails. Otherwise, negotiation between the participants initiates. Let us assume that this
negotiation results in a composite SLA which has to be assured – i.e. there is a step between the final
agreement where the end-to-end quality has to be guaranteed. Then, based on the end-to-end quality of
this SLA, the structure of the composite service, and the service quality specifications and negotiation
capabilities of candidate services stored in the broker’s system or retrieved by this entity, a negotiation
capability filtering, a Service Concretization (SC) problem solving and negotiation protocol discovery
are executed sequentially in order to: a) decompose the end-to-end quality, b) map each component
service of the composite service to a particular candidate service, and c) to choose a particular negotiation
protocol so as to enact the negotiation between the composite service provider and each component
service provider. Let us name this phase as hierarchical engagement phase. If there is no solution for
the SC problem, then the control goes back to the root negotiation process so as to re-negotiate the SLA
between the composite service provider and the requester (i.e., relax some quality constraints of the
requester).

Then, an hierarchical negotiation process is executed, whose goal is to establish an SLA for each
component service. If one of the component service negotiation fails, then the chosen candidate service
is filtered and either negotiation takes place for the next candidate service for the same component service
or the broker’s execution goes back and re-executes the steps b) and c) of the hierarchical negotiation
phase. The whole process stops either when all SLAs are established in an hierarchical manner or when
this is not feasible any more.

Backbone System for the Proposed Solution

Engagement protocols are used in order to setup a negotiation. After closely looking at the engagement
protocol described in the approach of Comuzzi and Spanoudakis [4], which was developed by the CITY
WP member organization for another European research project, it is easy to see that this protocol is
used to establish a composite monitoring framework for monitoring a Service-Based System (SBS) (i.e.
a composite service). A similar engagement protocol could be used to establish a composite negotiation
framework or broker that could mediate the negotiation both between the user and the composite service
provider and between the composite service provider and the third-party providers. This composite bro-
ker would get the negotiation capabilities of all the participants (e.g. after discovering which candidate
services can be used for executing a task of the composite service) and then would try to match them
(by considering the research work of the first research paper [1]) in order to find out which are the pos-
sible negotiation protocols that can be used and which third-party service providers would be ruled out
from negotiating with the composite service provider. Then this broker would run as an hierarchical pro-
cess in order to execute the n+1 negotiations between the participants by executing simultaneously the

External Final Version 1.3, Dated June 16, 2009 32

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.3

two different negotiation protocols analyzed in the research works of the second and third paper [2, 3].
So, actually, this research approach, if extended appropriately, could be the backbone of the composite
negotiation system-solution.

4.2.2 Paper [1]: Semantic-Aware Service Quality Negotiation

The goal of Web service (WS) discovery is to select WSs that satisfy both the users functional and non
functional requirements. Focusing on non functional requirements, a matchmaking algorithm usually
takes place to verify if the quality offered by the WS provider overlaps the quality requested by the user.
Since quality, in a provider perspective, is costly, a further step, a negotiation, should be performed to
identify a mutually agreed quality level.

In this paper, a semantic description model for service discovery and negotiation is proposed. More
specifically, OWL-Q, an extension of OWL-S for a rich, semantic, and extensible QoS-based service
description is extended in order to describe the negotiation capabilities of the participants. OWL-Q is ex-
tended with a new set of concepts and properties, which are grouped as Quality-related and Negotiation-
specific extensions. The former extend the ontology in order to accommodate the Negotiation Object,
i.e., the description of what can be negotiated. The latter introduce new concepts, such as the negotiator
actor or service consumers’ negotiation strategies, which are then used to define the negotiators’ decision
model.

For what concerns the negotiation protocol, the extension of OWL-Q that describes various nego-
tiation protocols, such as trading and tendering, is currently under development. In this paper, the re-
search approach is limited to QoS configuration algorithms for which the the negotiators’ strategies are
parameterized. The WS QoS configuration protocols proposed in the paper can be implemented by a
broker-based architecture for QoS negotiation.

Quality-related extensions are introduced to cope with two fundamental issues raised by the need to
support QoS negotiation through an ontology:

• Not all QoS dimensions, either technical or domain dependent, are negotiable. A QoS dimension
is Negotiable when its value can be set by the service provider at runtime, i.e., when the service is
invoked. Non-negotiable QoS dimensions are the ones for which the value cannot be set at runtime
by the service provider. For instance, when a service is invoked, its reputation is fixed, regardless
of the technique adopted for assessing reputation. Moreover, the service provider can always de-
cide whether to allow or not the negotiation of a specific quality dimension. In our SMS service
running example, response time can be considered as negotiable, since the response time value can
be altered by the provider at execution time according to the customer requirements. However, in
case the provider’s provisioning infrastructure does not allow such an adaptation, the developed
ontology allows the provider to declare the response time as non negotiable;

• In order to automatically negotiate the QoS of a service, we also need to define a total ordering
relation among admissible values identified for each QoS dimension. This ordering is established
by the communities of domain experts that define the quality documents associated to a category
of WSs.

Negotiation-specific extensions concern the concepts and properties, besides QoS definition, required
to establish a negotiation framework. In particular, the following concepts are identified:

• Negotiator Actor. Usually, the participants involved in WS QoS negotiation are the service
provider and the service consumer. However, a more flexible approach should consider that the
execution of a negotiation may be delegated to a trusted third party, such as, for instance, an ad-
hoc agent explicitly designed to negotiate on behalf of the service provider or the service customer.
Introducing the negotiation actor also enables our framework to accommodate other negotiation

External Final Version 1.3, Dated June 16, 2009 33

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.3

protocols, such as, for instance, single-text mediated negotiations, which require the existence of
a third party trusted by all the negotiation participants;

• Negotiation Strategy As previously introduced, our semantic-aware negotiation framework relies
on the assumption of having parameterized negotiation strategies, i.e., negotiation strategies that
are fully determined when a negotiator actor specifies the values of a set of parameters, such as the
initial offer and the degree of concession over time to the counterpart.

• Cost model From the provider’s point of view, the negotiation often relies on a cost model, i.e.,
parameterized functions that are used to evaluate the cost sustained by the service provider for
giving a certain level of quality in his or her service offers. Usually, WS QoS cost models are
additive, that is, the cost of a service offer is given by the costs associated by the cost model to
each single QoS value that appears in the offer.

Apart from proposing a specific ontological description model for service discovery and negotiation,
the paper motivates and highlights the power of ontologies when they are used in conjunction with rules
in order to infer new knowledge such as equivalence of quality attributes, matchmaking of a QoS offer
with a demand, producing the price of a specific QoS level for a provider, etc. Generally, the whole
discovery and negotiation algorithms may be written in the form of a modular set of rules so that only
specific functions need to be actually implemented in places where mathematical tools are required.

Research Approach Usage

The work analyzed in this paper can be used for the semantic description and matchmaking of quality-
based specifications, for the semantic description and matchmaking of the negotiation capabilities of the
participants, and for the production of useful facts that can assist the actual negotiation process. So this
work can be used in conjunction with an actual negotiation protocol, feeding it with valuable information
before it is enacted. With the appropriate extensions, this work can be used for discovering which is the
suitable negotiation protocol between a set of participants by automatically inspecting their negotiation
capabilities and inferring the required knowledge.

4.2.3 Paper [2]: A Framework for QoS-Based Web service Contracting

This paper proposes a framework for the automation of the Web service contract specification and estab-
lishment. An extensible model for defining both domain dependent and domain independent Web service
QoS dimensions and a method for the automation of the contract establishment phase are proposed. A
matchmaking algorithm is proposed for the ranking of functionally equivalent services, which orders
services on the basis of their ability to fulfill the service requestor requirements, while maintaining the
price below a specified budget. An algorithm for the configuration of the negotiable part of the QoS Ser-
vice Level Agreement (SLA) is illustrated, which is used to configure the agreement with the top-ranked
service identified in the matchmaking phase.

A contract is a formal agreement between two or more parties to create mutual business relations or
legal obligations. In electronic settings, contracts are composed of different parts, such as the definition
of business partners, the specification of functional obligations, and quality, price, and penalties related
to the object of the agreement. In a dynamic business scenario, the contract definition and establishment
should be automated as much as possible, in order to allow organizations to dynamically modify business
partners or reconfigure the SLAs on quality aspects negotiated with service providers. In the context
of Web services, contracts on QoS aspects can also be used for process monitoring and for providing
advanced capabilities, such as self-healing behavior with respect to functional or quality related failures
during service provisioning.

External Final Version 1.3, Dated June 16, 2009 34

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.3

Three activities define the lifecycle of an electronic contract, that is, (i) contract definition, (ii) con-
tract establishment, and (iii) contract enactment. The contract definition activity concerns the establish-
ment of a model for the definition of contract terms, which is understood and shared by the contracting
parties. This is usually achieved through the definition of a contract template, which is then instantiated
in an actual contract that reflects the domain dependent interests of providers and customers. The con-
tract establishment activity concerns the instantiation of the contract template in an actual contract. It
may involve the selection of the contract partner, among a set of potential partners, on the basis of func-
tional requirements, the matchmaking of offered and required QoS, and the negotiation of the contract
terms between the selected partner and the service customer. Finally, the contract enactment concerns
the execution of the contract. In the specific context of contracts on QoS aspects, this activity coincides
with the monitoring of the satisfaction of QoS guarantees negotiated by a service provider and the service
requestor.

This paper contributes to the research on Web service QoS contracting in two ways. First, it pro-
poses an extensible QoS model for Web services that is suitable to manage different QoS dimensions,
either negotiable, non-negotiable, domain dependent, or domain independent, defined by heterogeneous
metrics and measurement methods. The model entails the description of admissible values for a QoS
dimension as a collection of totally ordered values or ranges, which can be translated into adimensional
levels to reconcile heterogenous metrics and measurement methods. Second, it proposes mechanisms
for service matchmaking, selection, and offer configuration able to exploit the aforementioned QoS de-
scription. In particular, the matchmaking algorithm extends current practice, which usually requires the
provider offer to fully cover the service requestor’s requirements, by considering also the service offers
that only partially cover the requirements. Such a scenario becomes possible when matchmaking is cou-
pled with a subsequent offer configuration phase, which guarantees that the final agreement between a
service provider and the requestor belongs to the overlap of offered and required QoS. In between the
matchmaking and SLA configuration phases, we also propose a service selection mechanism, which ap-
plies to the specific context of QoS-Based Web service contracting some basic results on multi-attribute
auction theory developed in the field of microeconomics. The modeling concepts and the contract lifecy-
cle approach described in the paper have been developed within the S-Cube activities towards developing
concepts for specifying end-to-end quality characteristics and negotiating SLAs.

Research Approach Usage

While the first research approach can be used for modeling the negotiation capabilities of the negotiation
parties and for assisting the service negotiation process by automatically providing useful facts like which
services have quality capabilities that match the quality requirements of the requester, this approach is
complementary as it proposes a framework for the automation of the Web service contract negotiation
and establishment. So this approach can be utilized after the first approach execution (so some useful
information is already derived for it) for performing the actual negotiation between the participants for a
particular service, either this service is composite or not, and producing the corresponding SLA.

4.2.4 Paper [3]: A Dynamic Privacy Model for Web Services

Nowadays, Web services are being recognized as an emerging platform to quickly develop complex dis-
tributed applications. Many services (e.g., mortgage approval, travel agency) require service requestors
to disclose some personal data (e.g., credit card number, home address). As the number of inappropriate
usage and leakage of personal data is increasing, privacy concerns is becoming one of most important
concerns of service requesters, service providers and legislators. In order to take into account the pri-
vacy concerns of the individuals, organizations (e.g Web services) provide privacy policies as promises
describing how they will handle personal data of the individual. However, privacy policies do not con-
vince potential individuals to disclose their personal data, do not guarantee the protection of personal
information, and do not provide how to handle the dynamic environment of the policies.

External Final Version 1.3, Dated June 16, 2009 35

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.3

In this paper, a framework is introduced based on an agreement as a solution to these problems. A
privacy agreement model is proposed that spells out a set of requirements related to consumers privacy
rights in terms of how service provider must handle privacy information. Two levels are defined in the
agreement: (1) policy level (2) negotiation level. A formal privacy model is described in the policy level
to provide upon it a reasoning mechanism for the evolution. The framework supports in the negotiation
level of the agreement a lifecycle management which is an important deal of a dynamic environment that
characterizes Web services. Hence, the privacy evolution is handled in this level. A negotiation protocol
is proposed to enable ongoing privacy negotiation to be translated into a new privacy agreement.

Research Approach Usage

Privacy is considered an orthogonal quality attribute with respect to all other quality attributes and is
dealt with separately in quality-based matchmaking and negotiation systems. To this end, the approach
proposed by this paper can be used in order to enforce in parallel to the negotiation of the other qualities
the negotiation of privacy information. So, actually, two different types of negotiation can take place in
the system between the negotiation participants both at the level of a single service and at the level of the
composite service.

External Final Version 1.3, Dated June 16, 2009 36

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.3

Chapter 5

Discussion and Conclusions

In this deliverable, a rich and extensible quality meta-model has been proposed that can be used for pre-
cisely defining service quality models (like the S-Cube Quality Reference Model (QRM)), service quality
specifications and SLAs. Moreover, this meta-model captures information that can be used in service ne-
gotiation like negotiation capabilities, strategies, and cost models. Its development has followed a design
approach. Firstly, a set of requirements was gathered and then prioritized, filtered or extended, and
structured into a coherent ordered and structured set. Secondly, based on these requirements set and the
comments of the WP partners, the quality meta-model was designed and developed. The meta-model
was expressed using both the OWL ontology language 1 and the UML modeling language 2. In Section
5.1, we will elaborate on the usefulness of these two representations of the meta-model considering the
role that quality plays in the service life-cycle.

The second objective of this deliverable was to propose a methodology for decomposing end-to-
end quality into quality specifications for individual SLAs. To this end, it was first demonstrated that
composite service negotiation can be used to achieve this objective and produce a composite contract
that encompasses the quality specifications for individual SLAs. Then, a composite negotiation example,
extending the Wine Production case study, was given, whose result, i.e. the composite contract, was
specified based on the service quality meta-model. In this way, the meta-model’s effectiveness and
sufficiency was highlighted. Finally, a partial solution to the composite service negotiation problem was
sketched based on the research work of the WP partners.

While composite service negotiation achieves to construct an SBA, it is not enough for ensuring that
this SBA functions properly and assuring that its quality conforms to the service levels embodied in the
composite contract. Section 5.2 shortly elaborates on this issue and explains how the next WP deliverable
aims to address it.

5.1 Candidate Formalisms for the Meta-Model

The quality meta-model can be used in service quality definition, matchmaking, and negotiation as it
captures appropriate and essential information for these three processes. However, the implementation
formalism of this meta-model has a significant impact on how these three process can exploit the infor-
mation captured by this meta-model to achieve their goals.

The quality meta-model has been represented using both the OWL and UML formalisms. Both of
these formalisms cater for a formal quality description model. However, their expressiveness is different
and partially complementary, while their tool and technique support is quite different. We are not going
to describe and compare the expressivity of these formalisms. The prospective reader can refer to [28, 29]
for a complete comparison. However, we are going to show how supporting tools and techniques can be

1Meta-model is available at the URL: http://www.csd.uoc.gr/˜kritikos/Quality_meta-model.owl
2Meta-model is available at the URL: http://www.csd.uoc.gr/˜kritikos/Quality_meta-model.zip

External Final Version 1.3, Dated June 16, 2009 37

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.3

used to support or enable or implement the above three processes.

5.1.1 Quality Definition, Validation, and Alignment

Both OWL and UML can be used to define a quality meta-model. With this meta-model, quality specifi-
cations and models can be defined. However, after defining a quality model, the problem is if this model
is valid and correct. OWL is accompanied by reasoning techniques that can infer if a specific ontologi-
cal specification is consistent with its description model. However, this consistency partially solves our
problem because it cannot guarantee that the constraint description is correct (i.e., that there is a solution
allowed by the constraint set so that all quality metrics or unmeasurable attributes take a specific value
from their value type). One solution could be that after ontology consistency, a translation of the con-
straint description into a constraint model is performed and then this model is checked for consistency
with the help of a linear or constraint programming engine.

The ambiguity inherent in UML coupled with its support of multiple viewpoint modeling pose a great
risk of inconsistency. Many classifications of UML inconsistencies exist in the literature today. Several
proposals are also made for the mitigation of this risk, which do not provide a complete solution to this
problem. One solution adopted by many approaches is to check the consistency of a UML model only
after translating them into a more formal notation that naturally supports this kind of analysis. INRIA has
already performed work towards this solution for service quality specifications. In the next paragraph,
we sketch their solution, which will be implemented in the near future.

The transformation of the specification of a quality modeling language specification or a quality
meta-model (QMM) to a formal methods language, Alloy, is proposed. The formal specification of
the QMM in the form of an Alloy model is viable to different kinds of analysis. First, hundreds and
thousands of models in the domain specified by the QMM can be easily generated. The generated models
can be analyzed using an oracle which can be a program, a set of constraints or a human inspector. The
analysis results in the identification of undesirable models that were allowed by the QMM. The QMM
can be iteratively improved by adding expert-made Alloy facts that prevent the generation of undesirable
models. The Alloy facts are generalizations to prevent the existence of some properties of the undesirable
models. The generation of models itself can be guided by strategies that cover the entire QMM. The use
of meta-model coverage criteria to guide the generation of hundreds of different models that instantiate
different aspects of the QMM in different quality models is proposed. Second, the Alloy model of the
QMM can be checked based on assertions. If a certain assertion must always be true for the QMM,
a check is performed in a finite scope in an attempt to obtain counter-examples. A counter-example
indicates that the QMM still does not conform to the desired assertion and the counter-example indicates
that the language still allows the creation of erroneous models. We can therefore add new constraints as
Alloy facts to the QMM specification to prevent the generation of these counter-examples.

Except from validating the models produced by a quality meta-model, another quality definition
problem concerns the fact that two quality objects (i.e., instance of a concept) can be identical. For
example, a service provider and requester may produce quality specifications that define the same qual-
ity metric differently. OWL and its supporting reasoning techniques can solve this problem by using
alignment rules that dictate when two different objects are the same. For instance, QoS metric match-
making rules are proposed by Kritikos and Plexousakis [30]. In this way, service quality specifications
can be aligned with each other by exploiting alignment algorithms [15]. On the contrary, UML cannot
solve this problem, which causes accuracy problems in the quality-based matchmaking algorithms and
processes [15].

5.1.2 Quality-based Service Matchmaking

After the production of service quality offerings and demands (based on the quality meta-model), a
matchmaking algorithm/process must be executed in order to find which offerings match with a demand
requested by a user. Basically, there have been two different types of approaches used to solve this

External Final Version 1.3, Dated June 16, 2009 38

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.3

quality-based service matchmaking problem with OWL. The first approach [11] complements the OWL-
S functional description language with an OWL-based quality language used to describe a service quality
profile and then proposes a matchmaking metric for these quality profiles. Unfortunately, this approach
works only for integer-valued quality metrics and attributes as it uses in a erroneous way the OWL feature
of cardinality constraints. The second approach [31] recognizes the fact that OWL cannot be used for
reasoning about quality constraints so it proposes a hybrid solution: a) OWL is used to describe quality
specifications and rules are used to matchmake quality concepts and align these specifications; b) the
constraint part of these specifications is transformed to a specific constraint model and matchmaking a
quality offer and demand is performed by creating a joined constraint model which is then solved. The
latter approach is quite promising and could be used for exploiting the quality meta-model in quality-
based service matchmaking.

On the contrary, UML cannot be used for solving this problem because first of all it cannot be used for
matchmaking quality objects. Based on the UML-based solution of the consistency problem, a similar-
principles solution is sketched in the following. In particular, the transformation of a service’s A quality
model QA to a model MA in the formal language Alloy is proposed. The client’s query quality model
Qq is transformed to a set of assertions Sq in Alloy. Each assertion a in Sq is checked for a finite scope
against the Alloy modelMA. If a counter example is discovered for a scope that is large enough or within
certain time bounds, the quality model of service A is declared as not suitable for the requirements of
the client. This helps to filter out those services that do not match quality requirements of a client. If a
counter example is not discovered in a large finite scope, it can be concluded that the service satisfies all
requirements in the form of assertions of the query quality model Qq. This approach is not limited to
the use of Alloy but can be extended to other formal methods tools such as PROMELA, SPIN, and CLP.
However, it is incomplete.

5.1.3 Service Negotiation

OWL along with rules can be used for assisting the service negotiation process [1]. The OWL querying
mechanisms can be used for getting particular information from a quality model, while OWL reasoning
mechanisms can be used for inferring new knowledge. On the contrary, UML does not have querying
mechanisms, while it cannot also be used for inferring new knowledge automatically unless its specifi-
cations are transformed to different formalisms like Description Logics (DLs) or logic programs.

5.2 End-to-End Quality Assurance

While composite service negotiation, which is partially dealt with in this deliverable, achieves to con-
struct an SBA, it is not enough for ensuring that this SBA functions properly and assuring that its quality
conforms to the service levels embodied in the established composite contract. For ensuring that the
SBA functions as expected, we must assure that the SBA is functionally correct and satisfies its quality
requirements. This means that we must define a set of functional and non-functional properties of in-
terest and to have some techniques able, in a possibly automatic way, to decide if the composite service
as well as the services in the composition satisfy these properties. For instance, formal methods, most
of them with a semantics based on transition systems (e.g. automata, Petri nets, process algebras), have
been used to guarantee correct service compositions [32].

On the other hand, the contract enactment activity concerns executing the contract and assuring its
satisfaction. In the specific context of contracts on quality aspects, this activity coincides with assuring
the satisfaction of (end-to-end and individual) quality guarantees negotiated between a service provider
and the service requestor (or third-party service providers). Novel techniques for the run-time and proac-
tive assurance of quality, such as the (formal) analysis of service specifications during run-time, or the
prediction of quality attributes can be used to support the contract enactment activity. This is considered

External Final Version 1.3, Dated June 16, 2009 39

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.3

both from the service provider point of view (e.g., run-time quality assurance) as well as from the service
requestor point of view (e.g., monitoring on whether the agreed quality is delivered).

The forthcoming deliverable CD-JRA-1.3.4 “Initial set of principles, techniques and methodologies
for assuring end-to-end quality and monitoring SLAs” aims to address the above two problems by de-
vising an initial set of principles, techniques, and methodologies for assuring end-to-end quality and for
monitoring composite contracts and their constituent parts.

External Final Version 1.3, Dated June 16, 2009 40

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.3

Bibliography

[1] Marco Comuzzi, Kyriakos Kritikos, and Pierluigi Plebani. Semantic-aware service quality negoti-
ation. In Proc. ServiceWave. LNCS 5377, pages 312–323, Madrid, Spain, December 2008.

[2] Marco Comuzzi and Barbara Pernici. A framework for qos-based web service contracting. ACM
Transactions on web, 2009.

[3] Salima Benbernou and Hassina Meziane. A dynamic privacy model for web services. Computer
Standards and Interfaces, 2009. submitted.

[4] Marco Comuzzi and George Spanoudakis. A framework for hierarchical and recursive monitoring
of service based systems. In 4th International Conference on Internet and Web Applications and
Services (ICIW 09), Venice, Italy, May 2009. IEEE Computer Society.

[5] Kyriakos Kritikos and Dimitris Plexousakis. Requirements for qos-based web service description
and discovery. Compsac 2007: 31st Annual International Conference on Computer Software and
Applications, 02:467–472, 2007.

[6] Yutu Liu, Anne H. H. Ngu, and Liangzhao Zeng. Qos computation and policing in dynamic web
service selection. In Stuart I. Feldman, Mike Uretsky, Marc Najork, and Craig E. Wills, editors,
WWW (Alternate Track Papers & Posters), pages 66–73, New York, NY, USA, 2004. ACM.

[7] Svend Frølund and Jari Koistinen. Quality of services specification in distributed object systems
design. COOTS’98: Proceedings of the 4th conference on USENIX Conference on Object-Oriented
Technologies and Systems (COOTS), 5(4):179–202, 1998.

[8] V. Tosic, W. Ma, B. Pagurek, and B. Esfandiari. On the dynamic manipulation of classes of ser-
vice for xml web services. Research Report SCE-03-15, Department of Systems and Computer
Engineering, Carleton University, Ottawa, Canada, 2003.

[9] M. Tian, A. Gramm, M. Nabulsi, H. Ritter, J. Schiller, and T. Voigt. Qos integration in web services.
Gesellschaft fur Informatik DWS 2003, Doktorandenworkshop Technologien und Anwendungen
von XML, October 2003.

[10] Vladimir Tosic, Bernard Pagurek, and Kruti Patel. Wsol - a language for the formal specification of
classes of service for web services. In Liang-Jie Zhang, editor, ICWS, pages 375–381, Las Vegas,
Nevada, USA, 2003. CSREA Press.

[11] Chen Zhou, Liang-Tien Chia, and Bu-Sung Lee. Daml-qos ontology for web services. In ICWS
’04: Proceedings of the IEEE International Conference on Web Services (ICWS’04), pages 472–
479, San Diego, CA, USA, 2004. IEEE Computer Society.

[12] Frank Leymann. Web services flow language (wsfl 1.0). Technical report, IBM Corporation, May
2001 2001.

External Final Version 1.3, Dated June 16, 2009 41

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.3

[13] Alexander Keller and Heiko Ludwig. The wsla framework: Specifying and monitoring service
level agreements for web services. Journal of Network and Systems Management, 11(1):57–81,
2003.

[14] Antonio Ruiz Cortés, Octavio Martı́n-Dı́az, Amador Durán Toro, and Miguel Toro. Improving
the automatic procurement of web services using constraint programming. Int. J. Cooperative Inf.
Syst., 14(4):439–468, 2005.

[15] Kyriakos Kritikos. QoS-based Web Service Description and Discovery. PhD thesis, Heraklion,
Greece, December 2008.

[16] E. Michael Maximilien and Munindar P. Singh. Conceptual model of web service reputation.
SIGMOD Rec., 31(4):36–41, 2002.

[17] Viktor Yarmolenko and Rizos Sakellariou. Towards increased expressiveness in service level agree-
ments: Research articles. Concurr. Comput. : Pract. Exper., 19(14):1975–1990, 2007.

[18] Norman E. Fenton. Software Metrics: A Rigorous and Practical Approach. International Thomson
Computer Press, Boston, MA, USA, 1996.

[19] E. Michael Maximilien and Munindar P. Singh. A framework and ontology for dynamic web
services selection. IEEE Internet Computing, 8(5):84–93, 2004.

[20] Vladimir Tosic, Babak Esfandiari, Bernard Pagurek, and Kruti Patel. On requirements for ontolo-
gies in management of web services. In CAiSE ’02/ WES ’02: Revised Papers from the International
Workshop on Web Services, E-Business, and the Semantic Web, pages 237–247, Toronto, Ontario,
Canada, 2002. Springer-Verlag.

[21] Marco Comuzzi and George Spanoudakis. Describing and verifying monitoring capabilities for
service based systems. In Proceedings of the CAiSE 2009 Forum, Amsterdam, Netherlands, June
2009.

[22] WS-AGREEMENT. WS-Agreement Framework. https://forge.gridforum.org/
projects/graap-wg, September 2003.

[23] A.S. Vedamuthu, D. Orchard, F. Hirsch, M. Hondo, P. Yendluri, T. Boubez, and U. Yalçinalp. Web
services policy 1.5 - framework. W3C Recommendation, September 2007. http://www.w3.
org/TR/ws-policy/.

[24] M. Aiello, G. Frankova, and D. Malfatti. What’s in an Agreement? A Formal Analysis and an ex-
tension of WS-Agreement. Technical Report DIT-05-039, Informatica e Telecomunicazioni, Uni-
versity of Trento, 2005. http://eprints.biblio.unitn.it/archive/00000776/.

[25] I. Brandic, S. Pllana, and S. Benkner. Specification, Planning, and Execution of QoS-aware Grid
Workflows within the Amadeus Environment. Concurrency and Computation: Practice and Expe-
rience, 20:331–345, March 2008.

[26] Aad Van Moorsel. Metrics for the internet age: Quality of experience and quality of business.
Technical Report HPL-2001-179, HP Labs, August 2001.

[27] Shiyang Ye and Jun Wei. History heuristic based negotiation of service level agreements for com-
posite service. In QSIC ’08: Proceedings of the Eighth International Conference on Quality Soft-
ware, pages 313–320, Oxford, UK, 2008. Computer Society.

[28] L. Hart, P. Emery, B. Colomb, K. Raymond, S. Taraporewalla, D. Chang, Y. Ye, E. Kendall, and
M. Dutra. Owl Full and Uml 2.0 Compared. OMG TFC Report, March 2004.

External Final Version 1.3, Dated June 16, 2009 42

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.3

[29] Colin Atkinson and Kilian Kiko. A Detailed Comparison of Uml and Owl. Technical Report TR-
2008-004, Department for Mathematics and Computer Science, University of Mannheim, 2008.

[30] Kyriakos Kritikos and Dimitris Plexousakis. Semantic qos metric matching. In ECOWS ’06: Pro-
ceedings of the European Conference on Web Services, pages 265–274, Zurich, Switzerland, 2006.
IEEE Computer Society.

[31] Kyriakos Kritikos and Dimitris Plexousakis. Semantic qos-based web service discovery algorithms.
In ECOWS ’07: Proceedings of the Fifth European Conference on Web Services, pages 181–190,
Halle, Germany, 2007. IEEE Computer Society.

[32] M.H. ter Beek, A. Bucchiarone, and S. Gnesi. Formal Methods for Service Composition. Annals
of Mathematics, Computing and Teleinformatics, 1(5):1 – 10, 2007.

External Final Version 1.3, Dated June 16, 2009 43

