
Grant Agreement N° 215483

Copyright © 2008 by the S-CUBE consortium – All rights reserved.

The research leading to these results has received funding from the European Community's Seventh Framework Programme
[FP7/2007-2013] under grant agreement n° 215483 (S-Cube).

File name: 1.2.5_v2.0.doc0

Title: Comprehensive, integrated adaptation and monitoring principles,

techniques and methodologies across functional SBA layers considering
context and HCI

Author: UNIDUE, TILBURG, CITY,FBK, POLIMI, SZTAKI, UCBL, USTUTT

Editor: Deliverable leader (FBK)

Reviewers: Michael Parkin (TILBURG)

 Dragan Ivanovic (UPM)

 Andreas Metzger (UNIDUE)

Identifier: CD-JRA-1.2.5

Type: Deliverable

Version: 1.0

Date: March 16, 2011

Status: Final

Class: External

Management Summary

This deliverable presents the research results obtained within the scope of workpackage WP-JRA-1.2
towards the comprehensive integrated adaptation and monitoring principles, techniques and
methodologies across functional layers, proactive and context-aware adaptation. To bring the results
together and to provide a coherent view on the different techniques using common realizing architecture
a set of integration scenario has been defined and elaborated. Based on the integrated model defined in
previous documents, these scenarios aim to define the reference architecture and approach relating
various contributions, as well as to define the concrete interfaces and dependencies between them. The
scenario presented in this deliverable refer to the some of the key research problems studied in the scope
of the workpackage and the project, namely cross-layer quality driven monitoring and adaptation,
proactive adaptation and context-aware monitoring and adaptation.

Grant Agreement N° 215483

Copyright © 2008 by the S-CUBE consortium – All rights reserved.

The research leading to these results has received funding from the European Community's Seventh Framework Programme
[FP7/2007-2013] under grant agreement n° 215483 (S-Cube).

File name: 1.2.5_v2.0.doc0

3

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 3

Members of the S-CUBE consortium:

University of Duisburg-Essen Germany
Tilburg University Netherlands
City University London U.K.
Consiglio Nazionale delle Ricerche Italy
Center for Scientific and Technological Research Italy
The French National Institute for Research in Computer Science and Control France
Lero - The Irish Software Engineering Research Centre Ireland
Politecnico di Milano Italy
MTA SZTAKI – Computer and Automation Research Institute Hungary
Vienna University of Technology Austria
Université Claude Bernard Lyon France
University of Crete Greece
Universidad Politécnica de Madrid Spain
University of Stuttgart Germany

4

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 4

The S-CUBE Deliverable Series

Vision and Objectives of S-CUBE

 The Software Services and Systems Network (S-Cube) will establish a unified, multidisciplinary,
vibrant research community which will enable Europe to lead the software-services revolution,
helping shape the software-service based Internet which is the backbone of our future interactive
society.

By integrating diverse research communities, S-Cube intends to achieve world-wide scientific
excellence in a field that is critical for European competitiveness. S-Cube will accomplish its
aims by meeting the following objectives:

 Re-aligning, re-shaping and integrating research agendas of key European players
from diverse research areas and by synthesizing and integrating diversified

knowledge, thereby establishing a long- lasting foundation for steering research and for
achieving innovation at the highest level.

 Inaugurating a Europe-wide common program of education and training for

researchers and industry thereby creating a common culture that will have a profound
impact on the future of the field.

 Establishing a pro-active mobility plan to enable cross- fertilisation and thereby
fostering the integration of research communities and the establishment of a common
software services research culture.

 Establishing trust relationships with industry via European Technology Platforms
(specifically NESSI) to achieve a catalytic effect in shaping European research,

strengthening industrial competitiveness and addressing main societal challenges.
 Defining a broader research vision and perspective that will shape the software-service

based Internet of the future and will accelerate economic growth and improve the

living conditions of European citizens.

S-Cube will produce an integrated research community of international reputation and
acclaim that will help define the future shape of the field of software services which is of
critical for European competitiveness. S-Cube will provide service engineering methodologies

which facilitate the development, deployment and adjustment of sophisticated hybrid service-
based systems that cannot be addressed with today’s limited software engineering approaches.

S-Cube will further introduce an advanced training program for researchers and practitioners.
Finally, S-Cube intends to bring strategic added value to European industry by using industry
best-practice models and by implementing research results into pilot business cases and

prototype systems.

S-CUBE materials are available from URL: http://www.s-cube-network.eu/

http://www.s-cube-network.eu/

5

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 5

Foreword

The deliverable CD-JRA-1.2.5 “Comprehensive, integrated adaptation and monitoring principles,
techniques and methodologies across functional SBA layers considering context and HCI” aims at
addressing the following goals:

 To further develop and consolidate the comprehensive and integrated SBA adaptation
and monitoring framework focusing on the problem of proactive adaptation at the different
application layers;

 To provide, through the definition of three integration scenarios, a common basis for
the different fragmented and partial approaches developed within the project and to open up
further integration of different principles, techniques and mechanisms through common
interfaces and architecture mechanisms.
 To identify gaps in the current research domains of the different S-Cube partners and

provide a common future direction that leads us towards the vision of the project.

6

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 6

Table of Contents

1 Introduction ...8

1.1 Contribution to WP Challenges and Objectives ...8

1.2 Relations to other WPs and Integrated Research Framework...9

1.3 Structure of this Deliverable ..9

2 Integration Scenarios ..11

2.1 Reference Scenario Architecture ..12

2.2 Scenario Description ...13

2.2.1 Application model..13

2.2.2 Adaptation and Monitoring Problem...14

2.2.3 Overall Approach ...14

2.2.4 Individual Contributions ...14

3 Quality-driven Multilayer SBA Monitoring and Adaptation ..16

3.1 Application Model...16

3.2 Adaptation and Monitoring Problem ..16

3.3 Overall Approach ..16

3.3.1 Refined Architecture ..17

3.3.2 Refined SBA Life-Cycle..19

3.4 Individual Contributions ..21

3.4.1 A Fuzzy Service Adaptation based on QoS Satisfaction ...21

3.4.2 Selection of Service Adaptation Strategies Based on Fuzzy Logic23

3.4.3 Preventing KPI Violations in Business Processes based on Decision Tree Learning and

Proactive Service Substitution ...26

3.4.4 LAYSI: A Layered Approach for SLA-Violation Propagation in Self-manageable Cloud

Infrastructures..28

3.4.5 A Soft-Constraint Based Approach to QoS-Aware Service Selection...........................30

3.4.6 Model-driven Management of Services ...32

4 Assumption-based Proactive Monitoring and Adaptation..34

4.1 Application Model...34

4.2 Adaptation and Monitoring Problem ..34

4.3 Overall Approach ..35

4.3.1 Refined Architecture ..36

4.3.2 Refined SBA Life-Cycle..39

4.4 Individual Contributions ..41

7

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 7

4.4.1 Proactive SLA Negotiation for Service Based Systems ...41

4.4.2 Evolving Services from a Contractual Perspective...43

4.4.3 Adaptation of Service-based Business Processes by Context-Aware Replanning.........45

4.4.4 Towards Proactive Adaptation: A Journey along the S-Cube Service Life-Cycle...........49

5 Context-based Adaptation and Monitoring ..51

5.1 Application Model...51

5.2 Adaptation and Monitoring Problem ..51

5.3 Overall Approach ..51

5.3.1 Refined Architecture ..52

5.3.2 Refined SBA Life-Cycle..53

5.4 Individual Contributions ..54

5.4.1 A Pattern-based Approach for Monitor Adaptation ..54

5.4.2 Identifying, Modifying, Creating, and Removing Monitor Rules for Service Oriented

Computing ...55

5.4.3 A Context-driven Adaptation Process for Service-based Applications56

5.4.4 Modelling and Automated Composition of User-Centric Services..............................58

6 Conclusions ..61

7 References ...64

8

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 8

1 Introduction

The Monitoring and Adaptation of Service-based Applications (SBAs) remains as one of the most
challenging research problems both for the enterprise SOA and Internet of Services [23]. Dealing with
the intrinsic structural and conceptual complexity of such systems and taking into account the
openness and dynamicity of the environments where such applications operate, the challenges
revealed within the area of SBA adaptation and monitoring concern the integration and aggregation of
different approaches across functional SBA layers, availability of proactive adaptations, and flexibility
with respect to different types of context and contextual changes.

In the previous work within workpackage WP-JRA-1.2 the problem of integration of adaptation and
monitoring approaches, methodologies, and mechanisms available at different functional SBA layers
has already been studied. Starting from the baseline for cross-layer adaptation and monitoring
(Deliverable PO-JRA-1.2.3), where the requirements for such integration have been presented, the
initial integration of the existing and new research results has been provided (Deliverable CD-JRA-
1.2.4). This integration demonstrated the mapping of available solutions onto the generic SBA stack
and provided a set of cross-layer integrating approaches both at the methodological and the realization
level. However, the concrete integration of the wide range of specific approaches, concrete interfaces
and relations has not yet been provided. We believe that such a model of concrete integration, as well
as the definition of the relations and dependencies between those approaches, plays a fundamental role
in construction of a comprehensive, integrated adaptation and monitoring framework being developed
in JRA-1.2.

Together with the problem of integration of more traditional “reactive” approaches, there is a need to
study the problem of proactivity in adaptation at different layers and settings. The ability to anticipate
the need for adaptation enables an SBA to prevent the failures and deviations that are critical in the
open world of SBAs. Similarly, there is a need to consider the context of the SBA in a holistic manner
and to provide integrated approaches over context-driven SBA monitoring and adaptation.

In this deliverable we further develop a comprehensive and integrated SBA adaptation and monitoring
framework, that focuses on the above problems. In order to accomplish this, we introduce the
integration scenarios that follow common architecture but address specific problems, namely cross-
layer SBA quality, proactive SBA adaptation, and context-driven adjustment of the monitoring and
adaptation specification mechanisms. The goal of the scenarios is to provide a common infrastructure
for the adaptation and monitoring problem in hand, providing a common basis for the different
fragmented and partial approaches developed within the project. Starting from this common basis the
integration scenarios open up further integration of different principles, techniques and mechanisms
through common interfaces and architecture mechanisms.

1.1 Contribution to WP Challenges and Objectives

With respect to the research challenges from the Integrated Research Framework identified in the
workpackage WP-JRA-1.2, this deliverable provides several contributions. Each of the integration
scenarios identified and described in the document focuses on one of the following challenges:

 Comprehensive and integrated adaptation and monitoring principles, techniques, and
methodologies. Scenario 1 primarily focuses on the problem of integrating the adaptation and
monitoring aspects across different layers having the quality model of the SBA as the key
driving aspect. Specifically, a common and generic methodology based on data mining
approaches is used as a backbone of the scenario, to which different approaches for
monitoring and adaptation at different layers are attached.

9

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 9

 Proactive Adaptation and Predictive Monitoring. Scenario 2 addresses this challenge by
providing an approach based on explicit modelling and monitoring of various assumptions.
The violations of those assumptions are then used to validate the SBA requirements and to
trigger various forms of adaptation.

 Context- and HCI-aware SBA monitoring and adaptation. This challenge is directly
addressed by tScenario 3, where initial approaches take into account context changes while
performing adaptation and monitoring.

The definition of integration scenarios contributes to the first challenge as they provide a reference
model and a set of interfaces that will be further exploited for the definition of more flexible holistic
framework, where all the aspects (cross-layer integration, context, and proactiveness) are present.

1.2 Relations to other WPs and Integrated Research Framework

The results presented in this deliverable have clear relationships with the other S-Cube workpackages
and with the overall Integrated Research Framework. As a matter of fact, some of the research papers
represent joint results of several workpackages; the integration scenarios cover also variety of aspects
in these regards. Apart from the natural relations with the workpackages that deal with functional SBA
layers (JRA-2.1, JRA-2.2, and JRA-2.3), the presented results are also related to S-Cube
workpackages as follows:

 JRA-1.1. Research results regarding the model-driven management of services, adaptation
driven by service evolution, modeling of SBA assumptions, and context-based adaptation are
tightly coupled with the engineering and design workpackage. In order to underle the relation
between scenarios a mapping of the activities to the SBA life-cycle is presented. In this
mapping, we explicitly characterize the necessary design-time activities and steps relevant for
the specific constituent elements.

 JRA-1.3. Scenarios to target proactive adaptation using assumptions exploits the run-time QA
approaches to check the violation of requirements in order to identify the needs for adaptation.
Also in case of quality-driven monitoring and adaptation the reference quality model of JRA-
1.3 is used as the means to represent different quality factors across functional layers and their
relations.

We also remark that one of the goals of this deliverable is to directly contribute to the S-Cube
Integrated Research Framework (IRF) developed in the workpackage IA-3.1. The integration
scenarios defined here extend the IRF by providing the model and instantiation of the cross-cutting
integration of research results. These scenarios contr ibute to different views of the IRF (namely the
architectural and life-cycle views) and define common interfaces between different components across
layers. Moreover these integration scenarios will be used to define a set of validation scenarios in the
scope of IA-3.2 with the aim of analyze and validate the developed monitoring and adaptation
techniques and approaches.

1.3 Structure of this Deliverable

This document presents the results of integration of SBA monitoring and adaptation approaches based
on the integration scenarios. Section 2 provides the unified model for integration scenarios, in
particular, defines its structural architecture and the way different research results may contribute to
the scenario in the form of summarizing template.

Sections 3, 4, and 5 represent three integration scenarios that focus on quality-driven cross-layer
monitoring and adaptation, assumption-based proactive adaptation, and context-based adaptation and
monitoring, respectively. For each of those scenarios we define:

1

0

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 10

 The shared approach used by the scenario to resolve the problem within and across different
functional layers;

 The refined architecture, specific components and their relations that implements the approach
as well as the description of the specific activities across SBA life-cycle;

 The contributions of the partners onto the scenario, specifying the role, the relevant
architecture components and the life-cycle activities.

We remark that the deliverable provides only a structured view on the individual contributions from
the viewpoint of the integration scenarios; the papers themselves are attached to the deliverable and
are listed in annex A of the document.

Finally, the deliverable concludes with the discussions regarding the open points, gaps, and future
steps with respect to the objectives of the workpackage.

1

1

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 11

2 Integration Scenarios

The goal of this Section is to define a model of integration for the fragmented and specific technical
results obtained by the partners in the area of SBA adaptation and monitoring within specific
functional layers and addressing the specific aspects. This model of integration, referred to as an
integration scenario, aims at refining the overall adaptation and monitoring framework presented in
previous deliverables in a three specific ways.

First, the scenarios describe specific architecture and various modules that, operating at and across
different functional SBA layers, realize an instantiation of a particular SBA monitoring and adaptation
procedure. In other words, scenarios define the integration of different specific solutions that address
some specific problem of SBA adaptation (e.g., adaptation due to deviation of the SBA quality) in an
integrated, cross-layer manner (e.g., across different layers and/or different quality dimensions).

Second, the scenarios focus on a particular class of the applications and a particular problem. In this
way, the scenarios clearly shape the input models and specifications that facilitate the definition of the
interfaces and relations between different components and their realizing techniques.

Third, the scenarios combine the otherwise isolated solutions and techniques. Operating through
common interfaces, these techniques complement each other in order to provide a more complete
solution for the described instance of SBA adaptation and monitoring.

Introducing and defining such integration scenarios achieves the following goals.

 The scenarios allow us to overcome the problem of fragmentation and isolation of
different solutions provided individually at different technology layers. In many cases, the
independent solutions are insufficient or incompatible since the problem of holistic SBA
monitoring and adaptation has not been investigated. To solve the problem, the solutions
have to be appropriately extended in order to support the mutual requirements and inputs. In
this setting, the scenarios provide the means for expressing such relations and provide
concrete interfaces between the elements.

 The scenarios aim at covering a concrete adaptation problem or application domain in
an end-to-end manner. That is, the scenario covers all the important aspects and layers of the
application, thus enabling us to clearly identify, where the existing approaches may be
exploited and what the critical gaps are. Based on the identified gaps, the required
extensions and new solutions will be developed.

 As the scenarios focus on particular problem domains and aspects, they provide a
vertically refined vision of such problems and aspects. Within the scenarios the concrete
interfaces, components, and their implementations are defined for the purpose of those
aspects. However, those aspects potentially complement each other within the same
application. Therefore, the underlying architectures and components may be interleaved
providing a basis for the definition and development of more flexible and holistic SBA
adaptation and monitoring platform.

 The use of a common architecture, definition of the relations, and the use of a
common application type and domains, enables the end-to-end validation of different
contributions. We remark that the scenarios presented in this document do not aim at
covering all the possible problems and applications. Here we define the initial set of
(sufficiently generic) scenarios that have been jointly identified by the partners and that are
relevant from the point of view of the research agenda of the workpackage JRA-1.2. This
initial list will be eventually extended, as well as the scenarios defined here will be further
refined in the upcoming phases of the S-Cube project.

1

2

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 12

We remark that the reference architecture and life-cycle refined by the three scenarios exploit the
concepts and elements of the Integrated Research Framework (e.g. S-Cube Life Cycle view). In
particular, the usage of the integrations scenario to validate monitoring and adaptation research results
in the upcoming year will be the facilitated by the fact that the model of the integration scenarios
follows the approach used in IA-3.2 to define validation scenarios.

In the following sections we will define the integration scenarios and characterize the architecture and
the key concepts behind the model of the scenario. We will also demonstrate how the specific research
results may be accommodated within the scenarios and provide the characterization of the scenarios in
these regards. This generic model will be then instantiated in three different scenarios that incorporate
and relate contributions from the partners that has been studied through the work on the deliverable.

2.1 Reference Scenario Architecture

Based on the reference model of the conceptual SBA adaptation and monitoring framework defined in
Deliverable CD-JRA-1.2.2 “Taxonomy of Adaptation Principles and Mechanisms” [1], we present a
generic architecture for a complete monitoring and adaptation solution that will be instantiated by
different scenarios.

Figure 1 Reference A&M architecture

The architecture shown in Figure 1 defines a set of component specifications, which will be replaced
by the concrete implementations (or their combinations), and which defines a common flow of
information between those components based on a set of interfaces. The differentiation of the
presented components provides only a basis for the integration; concrete interfaces and
implementations are defined for each scenario separately.

The components of the reference A&M architecture from Figure 1 are:

 Monitors, sensors and event sources are mechanisms that detect, aggregate and correlate
different types of SBA events within and across functional SBA layers. Different types of
events are used to trigger the analysis of necessity of doing adaptation and its nature. The

1

3

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 13

events here are interpreted in generic way; they may refer to “traditional” events occurring
during execution, or to any form of changes in the application, its specification, environment
etc.

 Adaptation needs engine is a component that is responsible for defining whether the SBA
adaptation is needed. Depending on a specific scenario, this may involve considering human
participation, using complex analysis techniques, etc. The adaptation needs triggered in this
way identify the nature of the problem as an input to the adaptation strategy selection. Note
that such an engine may be distributed across the layers: an event occurring at one layer (e.g.,
business-level change) may require the adaptations to be performed at other layers (e.g.,
adjustment of the realizing service orchestration).

 Adaptation strategy engine is a component that selects a specific strategy to be applied to meet
the particular adaptation need. This is a technique, or set of techniques, that may be exploited
for the adaptation decision making and may include basic rule-based approaches as well as
sophisticated reasoning tools. The outcome of this component is the strategy defining concrete
adaptation actions to be exploited on top of the available adaptation capabilities.

 Adaptation enactment engine is a component that enacts the adaptation actions identified by
the strategy by means of invoking individual adaptation capabilities. The engine usually
includes a number of specific modules operating at different layers, or targeting a specific type
of adaptation.

 Adaptation capabilities are specific building blocks for constructing different types of
complex adaptations. Again, the set of the capabilities and their interfaces is specific for each
scenario; they may represent different aspects and functional layers.

The role of the architecture instantiated within the scenario is twofold. On one hand it defines the
placement of the specific contributing techniques and approaches, and the relations and interfaces
between them. On the other hand it helps to identify the gaps in its realization that require further
research activities.

2.2 Scenario Description

Apart from the architecture instantiation, the complete integration scenario model consists of a set of
elements that characterize the scenarios from different perspectives. This includes the characterization
of the applications (and possibly the relevant application domains) for which the scenario is defined,
the characterization of the adaptation and monitoring problem the scenario addresses and the
corresponding reference model, the description of the overall approach that in the scenario drives
different monitoring and adaptation activities, and the involvement of different solutions in those
activities. The latter aspect is captured both statically, i.e., by defining the architectural components
where the concrete technique is involved, and dynamically, i.e., by representing the different relevant
steps to be carried out throughout the reference SBA life-cycle [2].

2.2.1 Application model

The application model characterizes, at a high level of abstraction, prospective applications for which
the integrated solution of the scenario is relevant. This model defines the key components of the
application and their characteristics that are relevant from the adaptation point of view. We remark
that the application model is defined on top of the elements of different functional layers. The
examples of these elements are also represented in [3,4]. A typical model of the SBA refers to
complex long-running business processes associated to high-level business metrics (i.e., the model of
BPM layer), implemented on top of BPEL-based compositions of services and process fragments (the
model of SCC layer), that run on top of complex cloud-based infrastructures (the model of SI layer).
The application model may include application domain-specific notions depending on the level of
abstraction.

1

4

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 14

2.2.2 Adaptation and Monitoring Problem

The adaptation and monitoring problem is used to drive the definition of the integration scenario. It
characterizes the requirements the monitoring and adaptation activities should address. These
requirements are expressed in terms of the application model; they define the expected behaviour in
terms of the application model properties (e.g., expected reactions in cases of deviation from the
application quality model).

The description of adaptation and monitoring problem is based on the taxonomy of relevant A&M
characteristics presented in [1]. Besides, this definition refines those generic concepts and defines
concrete properties to be addressed by the integration scenario. We would like to stress the fact that
the problem specified for the scenario aim at covering the SBA in an integrated manner, i.e., to take
into account the aspects of different functional SBA layers.

2.2.3 Overall Approach

Each scenario defines also the common approach exploited within the scenario to carry out the
corresponding problem. The approach defines the key idea used to implement and relate the
components and their outputs to each other. In other words, the approach relates different research
contributions making them constituent parts of the complete solution to cover all the phases from
monitoring to adaptation enactment across different layers.

Besides presenting the reference idea, this part of the scenario descript ion provides the holistic view
on the target integrated solution. In particular, it defines:

 A refined architecture of the integrated solution, where the specific elements and
contributions are properly placed;

 A refined SBA life-cycle for the integrated solution, where the specific activities and steps
relevant for the constituent elements are represented.

2.2.4 Individual Contributions

Finally, the scenario is accomplished with the descriptions of the specific contributions. To provide a
more systematic vision, these contributions (each defined in a corresponding research paper) are
represented with a short template that summarizes the role and the participation of the result into the
scenario.

Title Title of the research work

Authors Authors of the research work

Type Type of contribution (Methodology / Model / Technique / Application /
Experimental Evaluation / ..)

Short Description Brief description of the contribution with respect to the research problem
presented in the integration scenario

Adaptation and Monitoring Problem

Contribution to the adaptation problem Specific adaptation problem addressed by the approach
(if any)

Contribution to the monitoring problem Specific monitoring problem addressed by the
approach (if any)

Refined Architecture

1

5

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 15

Architecture elements Specify and refine the relevant components of the
architecture

Requirements/Constraints Specify any important requirement/constraint of the
proposed approach on the architecture components

Refined SBA life-cycle

Life-cycle activities Specify what are the steps of the life-cycle covered by
the approach

Open problems and possible extensions

Open problems and extensions Specify what are the open research questions and limits
of the proposed approach and describe some future
extensions

1

6

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 16

3 Quality-driven Multilayer SBA Monitoring and Adaptation

3.1 Application Model

The SBA reference model in this scenario primarily targets applications implemented as long-running
business processes and workflows. Such processes are orchestrations of var ious software-based or
human-based services, made available through standardized interfaces and protocols. The
compositions themselves are defined as executable BPEL processes that interact with the services
defined using WSDL specifications. Both intra-enterprise and external services may take part of such
compositions. Internal services are realized on top of sophisticated service provisioning architectures,
such as cloud-based and grid based distributed systems.

 A key element of the application model in this scenario is the set of quality characteristics that the
different functional layers of the application should satisfy. At the BPM layers, for instance, these
characteristics have a form of Key Performance Indicators (KPIs) that state expectations regarding
application efficiency in terms of execution time, costs, user satisfaction, reliability, etc. As these are
propagated to the lower levels of the architecture, they become Process Performance metrics (PPMs)
that characterize the service orchestration, the SLAs of the individual services, the configurations of
the infrastructure, etc. These quality properties define the overall application requirements that ideally
should be maintained within a single execution of the business process and across the different
executions. To express the KPI and PPM requirements of this form one can refer to the SBA quality
model specified in [6].

3.2 Adaptation and Monitoring Problem

The primary adaptation and monitoring problem in this scenario considers the quality requirements
expressed as KPI, PPM, SLA, and other metrics of the application, across its functional layers. More
specifically, the goal of the monitoring is to observe different quality values corresponding to the
specified requirements, and, in case of the violation of the target values, to adapt the running business
process (or future instances) so the violation is either prevented or corrected.

The monitoring and adaptation in such scenario has to face two key challenges. First, the violation of
the high-level SBA requirements, expressed as KPIs, may be motivated by different factors and, more
importantly, at different layers and components. Given the complexity of the application, and its
service-oriented architecture, it is not possible to immediately discover which specific element caused
the overall quality degrade. Therefore, there is a need for appropriate methods for performing a
reasonable “diagnosis” of such problems.

Second, even if the problem (or a set of problems) is identified, it may not be immediately clear
whether the associated adaptation action is suitable. Indeed, given the complexity of the applications,
as well as the need to satisfy a range of requirements, the adaptations should be analyzed with respect
to the impact they may have on other elements of the SBA and on the other requirements.

 The integration scenario presented here aims to address these two challenges in the scope of the
quality-driven adaptation of the service-based business processes.

3.3 Overall Approach

The approach used in this integration scenario is based on the framework presented in the work by
Khazamiakin et.al. (2009) [7]. This framework realizes two principal ideas.

First, in the framework we exploit data mining techniques to perform the diagnosis of the problem that
leads to the violation of the high-level quality requirements. To achieve this, we continuously monitor
different quality properties of the different SBA elements and pass the monitored data to the quality
factor analyzer. That analyzer exploits the data mining techniques to identify the impact of the
elementary quality factors on the overall quality property. The resulting model, represented as a

1

7

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 17

dependency tree, gives the model of the adaptation requirements: it specifies which factors should be
improved and in which combination in order to avoid a degradation in overall quality.

Second, regarding the individual quality properties at different layers, we associate different
adaptation actions (also in that layer) which are expected to improve the specific quality factor and,
therefore, contribute to an overall improvement in quality. This model, together with the combinations
of factors to be improved provides a basis for the definition of a combined adaptation strategy. Finally,
this strategy is realized using specific adaptation capabilities.

As adaptation activities associated to different quality factors we currently consider the following:

 Service replacement. The service replacement activity is associated to the metrics of a single
process activity realized by a particular service. Specifically, these are the metrics that
characterize the QoS of individual service. To evaluate which services to use as replacements
the reasoning is based on current quality properties of the available services. This adaptation
applies in case of external services.

 Infrastructure management. This refers to the operations over the configuration of the
infrastructure (scheduling, resource allocation, etc.) on top of which the internal services run.

 Re-composition. This is an adaptation that aims to change the realizing service orchestration.
Specifically, the change may refer to replacement of a process fragment in case when a service
to be improved is a stateful, or may refer to changing one part of the process (e.g., sequence of
activities) with another predefined subprocess (e.g., parallel execution of the same activities).
In the former case, the adaptation is realized through the use of automated composition
techniques.

3.3.1 Refined Architecture

Figure 2Architecture of the scenario

Figure 2 shows the refined architecture of the scenario. The business process implementation, i.e.,
BPEL process instance, is running inside the process engine. The process instance interacts with the
external and internal services (Service 1, Service 2, etc). The internal services are running on top of

1

8

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 18

the cloud-based infrastructure.

Monitoring
In order to collect the relevant quality information, the monitoring is performed in two steps. First, the
basic information is gathered from the appropriate sources, in particular from:

 Business process instances. The information about the executions of the single activities, the
whole process and its sub-processes is collected from the specific sources, made available via
appropriate instrumentation of the process engine.

 Constituent Services. The information about the invocation of single services (both internal
and external) is collected from the corresponding components.

 Service Infrastructure. Specific probes are attached to the relevant components of the
infrastructure that manages the resources behind the internal services.

As can be seen from Figure 2, gathering information from business processes and services is
performed by Astro and Dynamo monitoring tools [13], while service infrastructure is monitored by,
e.g., Ganglia [22].

Once collected, the basic information on the different sources are aggregated and correlated by
EcoWare [20] and then passed to the quality factor analyzer.

Quality Factor Analysis
To identify the need for SBA adaptation we first perform the analysis of quality factors. The analysis
is based on machine learning techniques, more specifically on decision tree inference algorithms. The
result of this analysis is a decision tree, which is called a dependency tree as it shows the main quality
factors the KPI depends on. The leaves of the tree show whether the KPI is satisfied or violated in
relation to its target values, and the number of process instances which led to this path. Nodes of the
tree represent the quality factors influencing that KPI. The transitions leaving the node are equipped
with the values of the corresponding factor representing the condition on that factor.

The KPI dependency tree represents the adaptation needs as it contains the “violation” leaves that the
adaptation should eliminate. We remark that the adaptation may change the current configuration of
the application that will have impact on the future instances of the business process, or may target the
currently running instance, for which the overall tree is continuously reduced as the new monitored
data arrives.

Requirements Analyzer and Strategy Selection
Starting from the dependency tree, the concrete requirements are extracted and transformed into the
adaptation strategy (or set of adaptation strategies) that will be executed in order to improve the
quality characteristics.

The first step of the strategy selection is the requirements analysis. The idea is to extract from the
analysis tree the “good” paths (i.e., those that lead to “satisfaction” leaves) and to ensure the quality
factors on those paths reach the required values. Specifically, we identify the (set of) sets of quality
factors together with the target values for each of those factors. Based on these requirements, the
concrete strategy is identified.

The strategy selection process is based on the following two principles. First, each metric may be
associated with the set of alternative adaptation actions. For example, for the metrics associated to the
external services one may associate service replacement policies or SLA re-negotiation actions

1

9

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 19

equipped with the target values from the identified requirements; for internal services it is possible to
associate infrastructure management actions; for the process fragments one can associate alternative
implementations of those fragments, etc.

The second step is to select the best possible candidates and their combination. Different decision
mechanisms may be proposed for this purpose. Currently, we consider the following proposals that
may be exploited in isolation or in combinations with the others:

 Selection of services based on their current characteristics taking also into account the impact
on the other high-level SBA requirements [8];

 Selection based on degree of QoS satisfaction with fuzzy parameters [9];

 Use of soft constraints for QoS-based service selection [21];

The result of this step is the specific adaptation strategy or a list of strategies ordered according to
some global criteria that combines different adaptation actions with concrete parameters.

Adaptation Enactment Engine and Adaptation Capabilities
Adaptations are enacted through the invocation the corresponding adaptation capabilities for each of
the adaptation activities in the adaptation strategy. To coordinate different activities and to ensure their
alignment it is possible to exploit a common adaptation framework, such as the one presented in [10].
In this framework the business process engine is instrumented using aspect-oriented programming
(AOP) techniques to perform various adaptations, including service substitution, re-execution of an
activity, use of alternative process fragment, etc. To accommodate other forms of adaptations, e .g.,
infrastructure adaptation, the framework may be extended with the corresponding calls to the
infrastructure management API. The adaptation strategies are encoded in the form of composite
adaptation rules.

3.3.2 Refined SBA Life-Cycle

Figure 3 Mapping of the scenario to the S-Cube Life-Cycle

2

0

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 20

Figure 3 demonstrates the mapping of the key activities of the scenario onto the life-cycle of adaptable
SBAs.

In the Early Requirements Engineering phase, the key activity for this scenario refers to the
identification and elicitation of the primary quality requirements of the future business processes.
Specifically, here the relevant quality dimensions are identified and characterized.

In the Requirements Engineering and Design phase, along with the definition of the process model
and its projection onto the underlying service compositions and infrastructures, the quality
requirements are materialized into the Key Performance Indicators (KPIs), quality metrics of the
involved components, and their dependencies. To accomplish this, the Model-driven Management of
Services [20] is used. In this approach, the quality properties are incrementally refined into the specific
metrics across the different elements of the SBA, taking into account the future architecture of the
latter. Besides, in this phase the different adaptation actions are associated to the identified quality
metrics in order to be able to eventually recover their degradation. In this way, the metrics of the
individual services are associated with the replacement actions, while the quality metrics of the
infrastructure are associated with the available management actions, such as renegotiation, resource
allocation, etc.

During the phase of SBA construction, the specific adaptation and monitoring activities involve the
definition of the monitoring specification and of the concrete adaptation policies. As for the
monitoring specification, the model-driven approach described in [20] is used. Specifically, the refined
quality metrics are mapped to the different information sources and properties of the corresponding
architecture elements using the appropriate metamodel. Starting from the model of metrics and raw
data sampling model, the approach allows for automated extraction of the relevant simple and
composite monitoring specifications. These specifications will then be loaded into the management
infrastructure at the deployment time. Currently, the definition of the adaptation policies is not
following model-driven approach and is based on a set of predefined configurations of the specific
adaptations.

During the run-time cycle of the SBA, the adaptation and monitoring activities reflect the overall
approach behind the scenario. Specifically, during the Operation, Management and Quality

Assurance phase the raw data is collected and is aggregated according the monitoring specification
defined during the design. Using the monitoring tools (e.g., Dynamo, Ganglia, etc.) the raw data is
collected and then aggregated (e.g., using the EcoWare tool). The data collected is continuously used
to build and evolve the dependency tree that characterizes the model of the quality factors and their
dependencies across the different layers. Besides, the single metrics of every running instances are
used to “instantiate” the tree with respect to that instance in order to define whether the adaptation is
required for that instance.

The Identify Adaptation Needs phase is realized using the dependency tree analysis that aims at
distinguishing the negative values of KPIs from the positive ones, and at identifying the influential
factors for the former ones. This is done both for each instance and for the whole application model.
Based on the identified factors, a set of adaptation requirements is extracted in the form of the
combinations of factors to be improved and their target values.

The Identify Adaptation Strategy is built on top of the adaptation policies associated to the quality
metrics. For each required combination the corresponding adaptation policies are chosen. To rank
different possible solutions, various decision mechanisms are used, including the global KPI
constraints, fuzzy decision support and the use of soft constraints. The latter methods are particularly
useful in case of conflicting strategies.

The Enact adaptation phase is achieved through the invocation of interfaces of the specific
adaptation actions as presented in the scenario architecture.

2

1

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 21

3.4 Individual Contributions

3.4.1 A Fuzzy Service Adaptation based on QoS Satisfaction

Title A Fuzzy Service Adaptation based on QoS Satisfaction

Authors B. Pernici and S. H. Siadat

Type Technique / Experimental Evaluation

Short Description The work addresses the issue of selecting adaptation strategies. We propose
a fuzzy service adaptation approach that works based on the degree of QoS
satisfaction. In particular, we define fuzzy parameters for the QoS property
descriptions of Web Services (e.g. availability, satisfaction, response time).
This way, partial satisfaction of parameters is allowed through measuring
imprecise requirements. The QoS satisfaction degree is measured using
membership functions provided for each parameter. Experimental results
show the effectiveness of the fuzzy approach using the satisfaction degree
in selecting the best adaptation strategy.

Adaptation and Monitoring Problem

Contribution to the adaptation problem Our proposed approach for selecting adaptation
strategies is based on quality changes as adaptation
triggers. The selection is based on degree of QoS
satisfaction with fuzzy parameters that is calculated
using a fuzzy inference system. The decision making
works based on an algorithm that define whether the
QoS changes are compatible or incompatible with the
SLA with respect to a predefined threshold degree for
QoS satisfaction. The two main decisions are the
internal renegotiation in which the changes are
compatible with the service description in the contract
and service replacement in which the changes are
incompatible with the existing contract.

Contribution to the monitoring problem --

Refined Architecture

2

2

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 22

Architecture elements Quality factor analysis and mining:
Quality factor analysis is based on fuzzy logic
techniques. Various quality parameters are
given as inputs into a fuzzy inference system
that works based on if-then fuzzy rules. An
example of if-then rule can be the following:

 If (ResponseTime is compatible)

 and (Availability isCompatible)

 then (Satisfaction is high)

 Requirements analyser: The output of
the fuzzy inference system, the overall
satisfaction degree of QoS, is taken as
requirement of adaptation. An algorithm
evaluates which adaptation strategy to take
regarding to the predefined threshold degree
for QoS satisfaction.

Requirements/Constraints The approach assumes the relevant quality information
is collected from the monitoring phase. We consider
limited quality parameters in our web service quality
model; however, our quality model can be extended to
include broader quality metrics without major
modification.

Refined SBA life-cycle

Life-cycle activities Requirements Engineering: QoS
definition, fuzzy parameters.

 Construction: definition of if-then
fuzzy rules.

 Identify adaptation needs: quality
factor analysis, identifying degree of QoS
satisfaction.

 Identify adaptation strategy: Selection
of adaptation strategies based on degree of
QoS satisfaction.

Open problems and possible extensions

Open problems and extensions - Identifying a broader variety of quality
parameters.

- Involving other adaptation
requirements (e.g. cost and importance of
QoS)

- Applying hierarchical fuzzy systems
for the adaptation strategy selection.

Extended abstract

Quality of Service (QoS) once defined in a contract between two parties may change during the life-
cycle of Service-Based Applications (SBAs). Changes could be due to system failures or evolution of
quality requirements from the involved parties. Therefore, Web Services need to be able to adapt
dynamically to respond to such changes. However, formulating quality of service parameters and their
relationship with adaptation behaviour of a service based system is a difficult task. Furthermore, an

2

3

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 23

essential issue to be addressed is how to efficiently select an adaptation while, there exists different
strategies.

We propose a fuzzy service adaptation approach that works based on the degree of QoS satisfaction.
In particular, define fuzzy parameters for the QoS property descriptions of Web Services. This way,
partial satisfaction of parameters is allowed through measuring imprecise requirements using
membership functions provided for each parameter. We define fuzzy rules for inferring the overall
QoS satisfaction degree and its relation with adaptation actions.

The main point of using fuzzy logic is to find a relation and to map our input space to the output
space. The inputs here are namely service availability and response time and the output is the overall
satisfaction degree of them. For each QoS parameter in the service description we provide a
membership function that represents the level of satisfaction the parameter. The membership functions
map the value of each parameter to a membership value between 0 and 1. We use a piece-wise linear
function, named trapezoidal membership function, for this purpose.

Having defined the membership functions, the mapping between the input and output space will be
done by defining a list of if-then statements called rules. We use the satisfaction degree calculated
using the fuzzy inference system for the adaptation decision making. The decision making mechanism
works based on an algorithm that evaluates which adaptation strategy to take with respect to the
predefined threshold degree for QoS satisfaction. The two main decisions are internal renegotiation in
which the changes are compatible with the service description in the contract and service replacement
in which the changes are incompatible with the existing contract. The former case deals with the
internal contract modification with the same provider and requester while the earlier case requires the
selection of a new service and establishment of a new contract which can result in a huge loss of time
and money.

We have built and simulated a fuzzy inference system to interpret rules. We evaluate the effectiveness
of the fuzzy approach with a non-fuzzy approach with respect to the stability of the system in terms of
number of times a service needs to be replaced. The fuzzy approach performs a service replacement
only if the result of the QoS satisfaction is lower than a threshold. While in the non-fuzzy approach,
the replacement decision is done based on the precise evaluation of the QoS value ranges.

Our experimental results show the effectiveness of the fuzzy approach using the satisfaction degree in
selecting the best adaptation strategy and reducing the number of service substitutions for minor
deviations. Using fuzzy parameters we allow partial satisfaction of the parameters. Therefore, the
decision making for adaptation is not based on the precise evaluation of the quality ranges and it is
rather imprecise and allows the parameters to be relaxed. The non-fuzzy approach involved the
maximum number of service replacement which includes more queries for the service selection.

3.4.2 Selection of Service Adaptation Strategies Based on Fuzzy Logic

Title Selection of Service Adaptation Strategies Based on Fuzzy Logic

Authors B. Pernici and S. H. Siadat

Type Technique / Experimental Evaluation

Short Description In this paper, a Fuzzy Inference System (FIS) is adopted for capturing
overall QoS and selecting adaptation strategies using fuzzy rules. The
overall QoS is inferred by QoS parameters, while selection of adaptation
strategies is inferred by the overall QoS, importance of QoS and cost of
service substitution. In particular, hierarchical fuzzy systems were used to
reduce the number of rules. Our approach is able to efficiently select
adaptation strategies with respect to QoS changes. We test and compare
our fuzzy inference adaptation with a naive adaptation approach that
works based on precise measurement of QoS in order to show the
performance of the approach in reducing the number of service

2

4

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 24

substitutions for minor deviations.

Adaptation and Monitoring Problem

Contribution to the adaptation problem We are interested in changes of service quality as
symptoms and triggers for adaptation. Besides, we
consider cost of service substitution and importance
of QoS as requirements/factors of adaptation for
selecting the best strategy. We take advantage of the
fuzzy logic for measuring overall QoS and selecting
service adaptation strategies. We concentrate on QoS
changes in a SBA and their relations with adaptation
actions using fuzzy rules. We apply hierarchical
fuzzy systems to address the rule explosion problem
and to reduce the number of rules. This also provides
the ability to efficiently manage different categories
of input parameters, increase the scalability and
improve the reusability of the system. In particular,
our approach employs two fuzzy inference systems
that use if-then rules to manage QoS changes and to
support a decision making to decide which adaptation
strategy is the best to be taken. We consider three
adaptation strategies: do-nothing, renegotiation, and
substitution.

Contribution to the monitoring problem --

Refined Architecture

Architecture elements Quality factor analysis and mining: Quality
factor analysis is based on fuzzy logic
techniques. Various quality parameters are
given as inputs into a QoS assessment engine
which is a fuzzy inference system that works
based on if-then fuzzy rules.

 Requirements analyser: A decision making
engine that is a fuzzy inference system is
placed in the architecture for selecting
adaptation strategies. The engine uses the
overall degree of QoS received from the QoS
assessment engine together with other
adaptation factors to infer a decision making
for adaptation. Information about
adaptation requirements are kept in an
adaptation rule base. The output of the
engine, after defuzzification, represent the
adaptation strategy needs to be taken.

Requirements/Constraints The approach assumes the relevant quality
information is collected from the monitoring phase.
Our fuzzy system requires human expertise to define
an exact membership function for each parameter and
determine the number of rules.

Refined SBA life-cycle

2

5

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 25

Life-cycle activities Requirements Engineering: QoS definition,
fuzzy parameters.

 Construction: definition of if-then fuzzy rules.

 Identify adaptation needs: quality factor
analysis, identifying overall QoS, importance
of QoS and cost of substitution.

 Identify adaptation strategy: Selection of
adaptation strategies based on an inference
approach and adaptation priority.

Open problems and possible extensions

Open problems and extensions - Identifying a broader variety of quality
parameters (e.g. context).

- Applying learning techniques to optimize
number of rules.

- Applying adaptive learning techniques to
customize the membership functions.

Extended abstract

Web Service adaptation and evolution is receiving huge interest in service oriented architecture
community due to dynamic and volatile web service environment. Regarding quality of service
changes, Web Services need to be able to adapt dynamically to respond to such changes. However,
formulating quality of service parameters and their relationship with adaptation behaviour of a service
based system is a difficult task. In this paper, a Fuzzy Inference System (FIS) is adopted for capturing
overall QoS and selecting adaptation strategies using fuzzy rules. We argue what is missing here is an
appropriate decision making process for selecting adaptation strategies that takes into consideration
different adaptation requirements. In this work we are interested in changes of service quality as
symptoms and triggers for adaptation. Besides, we consider cost of service substitution and
importance of QoS as requirements/factors of adaptation for selecting the best strategy. Therefore, the
overall QoS is inferred by QoS parameters, while selection of adaptation strategies is inferred by the
overall QoS, importance of QoS and cost of service substitution.

We consider four quality parameters in our web service quality model: response time, availability,
security and reputation. We apply hierarchical fuzzy systems to address the rule explosion problem
and to reduce the number of rules. This provides the ability to efficiently manage different categories
of input parameters, increase the scalability and improve the reusability of the system. Particularly; we
use two fuzzy inference engines, namely, QoS assessment engine and decision making engine. The
former is used to infer the overall degree of QoS and the earlier is used to choose the adaptation
actions. Each inference engine uses its own fuzzy rules. QoS-related rules are stored in a knowledge
base and adaptation-related rules are stored in an adaptation rule base. QoS parameters perform as
input variables for the QoS assessment engine. Fuzzy rules in the knowledge base can be used for
inferring the overall QoS degree. The decision making engine works based on the results of the QoS
assessment engine. Fuzzy rules in the adaptation rule base will be used for inferring an adaptation
strategy. We consider three adaptation strategies: do-nothing, renegotiation, and substitution.

Our approach is able to efficiently select adaptation strategies with respect to QoS changes. We test
and compare our fuzzy inference adaptation with a naive adaptation approach that works based on
precise measurement of QoS in order to show the performance of the approach in reducing the number
of service substitutions for minor deviations. In general, the experiments show that our approach
intelligently reduces the number of service substitutions in comparison to the naive method. This is
done by a trade-off between overall degree of QoS, importance and cost of adaptation. This way,
minor deviations could be ignored due to high cost of service adaptation and partial satisfaction of
QoS parameters is allowed.

2

6

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 26

3.4.3 Preventing KPI Violations in Business Processes based on Decision
Tree Learning and Proactive Service Substitution

Title Preventing KPI Violations in Business Processes based on Decision Tree
Learning and Proactive Service Substitution

Authors B. Wetzstein, A. Zengin, R. Kazhamiakin, M. Pistore, D. Karastoyanova,
F. Leymann

Type Methodology / Experimental Evaluation

Short Description The work presents the instantiation of quality-driven SBA adaptation
scenario, focusing on the instance adaptation via service substitution. The
work describes complete methodology, from defining and monitoring KPI
and potential influential quality factors to identification of adaptation need,
selection various strategies and their ranking. Besides, the work presents
the experimental evaluation of the approach.

Adaptation and Monitoring Problem

Contribution to the adaptation problem With respect to the adaptation problem of the scenario
the work focuses on the adaptation in service
composition driven by service quality factor degrade
leading to KPI violation. As an basic adaptation action
the service replacement is used, while the service
selection is driven by the dependency analysis and the
revealed target values.

Contribution to the monitoring problem --

Refined Architecture

Architecture elements Quality factor analysis and mining:
Quality factor analysis is based on data mining
techniques. Various collected metrics values
across process instance executions are feed
into the WEKA data mining tool to build KPI
dependency tree.

 Requirements analyser: adaptation
requirements are extracted from the “green”
paths of the instantiated dependency tree. Only
“adaptable” metrics are considered (i.e., those
that can be improved by service replacement).
The list of service replacement strategies is
ordered according multi-criteria ranking.

 Adaptation enactment engine + service
replacement: the engine is implemented as the
extension of Apache Orchestration Director

Engine (ODE) process engine. The
implementation deals with blocking instance
execution, performing the analysis, and service
replacement based aspect-oriented approach.

2

7

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 27

Requirements/Constraints The approach relies on the ability to collect and
properly correlate the quality metrics for the purpose of
the analysis.

Refined SBA life-cycle

Life-cycle activities Requirements Engineering: KPI
definition.

 Construction: definition of probes,
sensors, and data correlation mechanisms.

 Operation, Management, and QA:
monitoring of metric values for a single
instance; continuous evolution of dependency
tree.

 Identify adaptation needs: quality
factor analysis.

 Identify adaptation strategy:
identification of service replacement strategies
and their ranking.

 Enact adaptation: dynamic AOP-based
service binding

Open problems and possible extensions

Open problems and extensions - Integration of other types of
adaptations.

- Relation and integration of other types
of selection strategies.

- Analysis of impact of adaptations on
other SBA components.

Extended abstract

This paper presents an adaptation approach that aims to address the problem of preventing KPI
violation for a single business process instance. Very often the business processes realized on top of
service-oriented architectures have a complex structure and involve a variety of services. It is not often
possible to identify which properties of which constituent services have an impact on the KPI and
have to be replaced. Furthermore, to prevent a violation in a single instance there is a need to
anticipate the possible adaptation.

To accomplish this, the work relies on the quality factor analysis approach in order to automatically
identify influential factors for KPI violations. The execution of the business process and its KPIs are
continuously monitored. Based on historical data of this type the decision trees that express the
influence of different service metrics on the business process KPI are constructed using data mining
techniques. The resulting decision tree is used as a prediction model: for the running process instance
the decision tree is used to identify the adaptation requirements in terms of services to be replaced and
the target values they should meet. Multivalued ranking with global constraints is then used to order
possible alternative adaptation scenarios. The analysis is done across the execution of process instance
in different “checkpoints”, thus enabling proactive adaptation of the instance.

The overall framework is completely realized and the experimental evaluation is performed.
Specifically, the monitoring is done via instrumentation of BPEL engine where the implementing
service orchestration is run; the data is collected and aggregated with ESPER monitoring tool. The

data mining is performed with the Waikato Environment for Knowledge Analysis (WEKA) tool [29],

2

8

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 28

and the decision tree is analysed with an ad-hoc algorithm. The execution blocking and service
replacement is performed via instrumentation of BPEL engine using AOP techniques. The
experimental results show that the adaptation done in this way allows for preventing the violations in
around 90% of cases. Furthermore, taking the adapted instance into consideration while learning
dependencies further improves the quality of the proactive adaptation.

3.4.4 LAYSI: A Layered Approach for SLA-Violation Propagation in
Self-manageable Cloud Infrastructures

Title LAYSI: A Layered Approach for SLA-Violation Propagation in Self-
manageable Cloud Infrastructures

Authors Ivona Brandic, Vincent C. Emeakaroha, Michael Maurer, Sandor Acs,
Attila Kertesz, Gabor Kecskemeti, Schahram Dustdar

Type Methodology/Experimental Evaluation

Short Description Brief description of the contribution with respect to the research problem
presented in the integration scenario

Adaptation and Monitoring Problem

Contribution to the adaptation problem The paper discusses an approach to autonomously
adapt the different layers of the service infrastructure
according to the SLA agreements with higher layers of
the service based application

Contribution to the monitoring problem The work proposes to monitor possible SLA-violations
in the various layers of the infrastructure enabling
either the propagation of possible violations to the
higher layers or alternatively an autonomous reaction
in the infrastructure.

Refined Architecture

Architecture elements •Monitors: SLA-Violation sensors of the autonomic
service instances
•Adaptation needs engine: Autonomic manager of the
current infrastructure layer (e.g. meta negotiation, meta
brokering, automatic service deployment)
•Adaptation strategy engine: The negotiation broker
automatically analyses if the current SBA layer can
handle the SLA-Violation without propagating it to
higher levels for renegotiation
•Adaptation enactment engine: Decision between
service instance replacement or renegotiation
•Adaptation capabilities: Dynamic binding (allows the
use of new service brokers, the deployment of new
service instances), SLA-renegotiation (allows the
propagation of SLA-violations towards higher layers of
the service based application)

Requirements/Constraints The proposed techniques require the presence of a
knowledge base describing the possible actions and
reactions on the various SLA-violations

2

9

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 29

Refined SBA life-cycle

Life-cycle activities •Construction: Developers identify the SLA-violation
cases and specify the possible adaptation strategies in
the knowledge base
•Operation, management and QA: The autonomic
manager controls the various infrastructure layers to
react the possible SLA-violations
•Identify adaptation requirements: When an SLA-
violation is detected the Autonomic manager identifies
the possible adaptation strategies according to the
knowledge base of the infrastructure layer where the
SLA violation occurred.
•Identify adaptation strategy: The Negotiation broker
decides whether the violation can be handled within
the current infrastructure layer or a propagation is
needed.
•Enact adaptation: The negotiation broker initiates a
renegotiation with the higher level SBA components if
the infrastructure cannot handle the ongoing service
request with the current SLA constraints
•Deployment and provisioning: The infrastructure
level adaptation could initiate a new service
deployment to fulfil the constraints of the SLA or
alternatively it can even select to reschedule the service
request in a different infrastructure (e.g. redirect some
requests to cloud infrastructures)

Open problems and possible extensions

Open problems and extensions •Definition of SLA constraints for interfacing with
higher level SBA components
•Cost analysis of the interventions for avoiding future
SLA-violations

Extended abstract

Cloud computing represents a promising computing paradigm where computing resources have to be
allocated to software for their execution. Self-manageable Cloud infrastructures are required in order
to achieve that level of flexibility at one hand, and to comply to users’ requirements specified by
means of Service Level Agreements (SLAs) at the other. Such infrastructures should automatically
respond to changing component, workload, and environmental conditions minimizing user interactions
with the system and preventing violations of agreed SLAs. However, identification of sources
responsible for the possible SLA violation and the decision about the reactive actions necessary to
prevent SLA violation is far from trivial.

First, in this paper we present a novel approach for mapping low-level resource metrics to SLA
parameters necessary for the identification of failure sources. Second, we devise a layered architecture
for the bottom-up propagation of failures to the layer, which can react to sensed SLA violation threats.
We discuss a novel model for mapping of low level resource metrics to user defined SLA parameters.
Thereafter, we present a communication model for the propagation of SLA violation threats to the
appropriate layer of the Cloud infrastructure, which includes negotiators, brokers, and automatic
service deployer.

3

0

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 30

3.4.5 A Soft-Constraint Based Approach to QoS-Aware Service Selection

Title A Soft-Constraint Based Approach to QoS-Aware Service Selection

Authors M.A.Zemni, S.Benbernou, M.Carro

Type Model/Methodology

Short Description Service-based systems should be able to dynamically seek replacements
for faulty or underperforming services, thus performing self-healing. It
may however be the case that available services do not match all
requirements leading the system to grind to a halt. In similar situations it
would be better to choose alternative candidates which, while not fulfilling
all the constraints, allow the system to proceed. Soft constraints, instead of
the traditional hard constraints, can help naturally model and solve
replacement problems of this sort. In this work we apply soft constraints to
model SLAs and to decide how to rebuild compositions which may not
satisfy all the requirements, in order not to completely stop running
systems.

Adaptation and Monitoring Problem

Contribution to the adaptation problem With respect to the adaptation problem of the scenario
the work focuses on the adaptation in service
composition driven by QoS in an SLA. As a basic
adaptation action the service replacement is used,
while the service selection is driven by the required
values in the SLA.

Contribution to the monitoring problem --

Refined Architecture

Architecture elements Quality factor analysis and mining: In
order to find ranked solutions related to user
preferences, Quality factor analysis is based on
Soft constraint solving problem (SCSP)
techniques.

 Requirements analyser: adaptation
requirements are extracted from the Quality
factor analysis step. Only acceptable values are
considered (i.e., those that can be improved by
service replacement). The list of service
replacement strategies is ranked according to
user preferences.

 Adaptation enactment engine + service
replacement: The implementation deals with
performing the analysis, and service
replacement instrumented using aspect-
oriented techniques.

Requirements/Constraints The approach relies to overconstrained problems and
offers a feasible solution by ranking solutions.

Refined SBA life-cycle

3

1

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 31

Life-cycle activities Requirements Engineering: Definition
of quality requirements in an SLA

 Construction: definitions of quality
service relaxation and penalties.

 Operation, Management, and QA:
monitoring the quality values.

 Identify adaptation needs: quality of
values on the SLA

 Identify adaptation strategy:
identification of service replacement strategies
and their ranking depending of the service
offerings.

 Enact Adaptation: The invocation of

Interfaces.

Open problems and possible extensions

Open problems and extensions - Integration of other types of
adaptations.

- Analysis of impact of adaptations on
other SBA components.

Extended abstract

A (web) service can be defined as a remotely accessible software implementation of a resource ,
identified by a URL. A set of protocols and standards, such as WSDL, facilitate invocation and
information exchange in heterogeneous environments. Software services expose not only functional
characteristics, but also non-functional attributes describing their Quality of Service (QoS) such as
availability, reputation, etc. Due to the increasing agreement on the implementation and management
of the functional aspects of services, interest is shifting towards non-functional attributes describing
the QoS. Establishing QoS contracts, described in the Service Level Agreement (SLA), that can be
monitored at runtime, is therefore of paramount importance. Various techniques to select services
fulfilling functional and non-functional requirements have been explored, some of them based on
expressing these requirements as a constraint solving problem (CSP). Traditional CSPs can either be
fully solved (when all requirements are satisfied) or not solved at all (some requirements cannot be
satisfied). In real-life cases, however, over-constraining is common (e.g., because available services
offer a quality below that required by the composition), and problems are likely not to have a classical,
crisp solution. Solving techniques for soft CSPs (SCSP) can generate solutions for overconstrained
problems by allowing some constraints to remain unsatisfied.

Our framework takes into consideration the penalties agreed upon on the SLA by building a new
(Soft) Service Level Agreement (SSLA) based on preferences where strict customer requirements are
replaced by soft requirements allowing a suitable composition. This agreement has to include penalty
terms to be applied while the contract terms are violated. The framework seamlessly express QoS
properties reflecting both customer preferences and penalties applied to unfitting situations. The
application of soft constraints makes it possible to work around overconstrained problems and offer a
feasible solution. Our approach makes easier this activity thanks to ranked choices. Introduc ing the
concept of penalty in the Classical SCSP can also be useful during the finding and matching process

3

2

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 32

3.4.6 Model-driven Management of Services

Title Model-driven Management of Services

Authors Luciano Baresi, Mauro Caporuscio, Carlo Ghezzi, and Sam Guinea

Type Methodology/Model/Prototype implementation/Experimental Evaluation)

Short Description The work presents a model-driven approach for engineering manageable
services. The approach models quality dimensions, management objectives,
and key performance indicators. These concepts are exploited at runtime
thanks to appropriate transformations. The methodology is supported by a
prototype framework called ECoWare. An initial performance evaluation is
also provided

Adaptation and Monitoring Problem

Contribution to the adaptation problem --

Contribution to the monitoring problem The paper contributes to the monitoring phase of the
integration scenario. In particular, we use the event
correlation capabilities of the ECoWare framework to
understand behaviors that are witnessed at two
different layers in the system (software vs.
infrastructure).

Refined Architecture

Architecture elements Dynamo: an aspect-oriented extension of the
ActiveBPEL execution engine. Processes are
instrumented with the code needed to gather
behavioral events at runtime.

 ECoWare:
Esper: a tool for complex event processing.
Our event processing elements are
automatically derived, from the management
model, as specific instantiations of esper
processors.
Siena: a distributed event bus for
communicating processors.
SienaAdapter: needed to translate events to and
from the format used within the Siena event
bus.

Requirements/Constraints The approach relies on the capability to capture
runtime events within the system, and to translate
them into ECoWare events. It is not necessary to use
Dynamo, other runtimes could be used if they satisfy
this requirement.

Refined SBA life-cycle

3

3

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 33

Life-cycle activities Early Requirement Engineering: high level
definition of quality dimensions of interest
(CIM).

 Requirement Engineering and Design:
concrete definition of quality dimensions of
interest through pipe-and-filter composition of
data sources and KPI processors.

 Construction: The data extraction, the event
processors, and their inter-linkings are all
automatically synthesized by the approach.

 Deployment and Provisioning: Synthesized
event sources and processors are deployed to
Dynamo and to the ECoWare system
automatically.

 Operation, Management and Quality
Assurance: Dynamo and ECoWare are runtime
frameworks. Together they allow for complex
monitoring of quality dimensions through
event processing.

Open problems and possible extensions

Open problems and extensions Currently the approach does not explicitly support
events coming from the infrastructure level. A
common abstraction for the software and the
infrastructure layers may be needed.

Distributed ownership in service oriented systems means that it is problematic to measure and control
quality of service indicators. Management activities are ever more important, since a complete
validation of the system is impossible at design- or deployment-time. Management activities must
become an integral part of the system's development process, from requirements elicitation, to the
implementation, and to the execution. In this paper we present the Model-Driven Management of
Services (MDMS) approach. It supports the explicit modeling of quality dimensions, management
objectives, and key performance indicators, and the transformations required to exploit these notions
at runtime. The paper also introduces ECoWare, a prototype framework for the deployment and
operation of managed services.

MDMS provides a comprehensive MDE solution that considers management throughout the
application's lifecycle. The application and its management features are developed in parallel, using
different yet related models, transformations, and tools. At the CIM (Common Information Model)
level, we analyze and collect requirements for the managed system, both for its functional design and
its management.We use BPMN and appropriate annotations. At the PIM (Platform Independent
Model) level, QoS dimensions are mapped to quantitative KPIs (Key Performance Indicators). We
have two models at this level. The RDS (Raw Data Sampling) model defines what data are going to be
needed at runtime. The KPI model describes how these data are correlated and aggregated to calculate
the KPI's value. At the PSM (Platform Specific Model) level, we transform the RDS and the KPI
models into concrete data collection models for the Dynamo composite service execution
environment, and into processing models for ECoWare.

The RDS models are transformed into Dynamo sensor models using QVT
(Query/View/Transformation), a standard for model transformation propose by the Object
Management Group (OGM). Dynamo provides two different kinds of sensors: interrupt and polling
sensors. Since the data produced by Dynamo do not directly comply with the event format used
within EcoWare, they are transformed using specific adapter components, before being sent to
EcoWare.

3

4

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 34

The KPI models are transformed into EcoWare configurations. EcoWare consists of a distributed
event-bus implemented in Siena, and a number of processors, connected to that bus, that consume the
events produced by Dynamo in a pipe-and-filter fashion. The processors are built as esper event
consumers.The number of processors and their local configurations are automatically synthesized
from the KPI models.

Early experiments demonstrate that the overhead introduced by Siena and Esper are negligible with
respect to the overhead introduced by Dynamo for AOP-based data collection. The use of Dynamo,
instead of a regular instance of ActiveBPEL, added an average 11 milliseconds to the execution of the
well-known LoanApproval example process. Each sensor adds an additional 2 milliseconds.

4 Assumption-based Proactive Monitoring and Adaptation

4.1 Application Model

As a model of the SBA in this scenario we consider business processes that are realized on top of
executable service compositions implemented in BPEL [11]. An important aspect, however, is that
here we focus specifically on hybrid applications, i.e., those that incorporate both external third-party
services and internal services realized within the organization where the business processes operate.

As for the external services, they are accessible over standard Web service protocols. The contractual
aspects regarding the execution of those services and their characteristics are controlled by
corresponding Service Level Agreements (SLAs).

The internal services, are realized on top of the service infrastructures, such as computational grids,
clouds, or clusters.

The model of the applications of this type, besides the functional (e.g., service interface and protocol)
and non-functional (e.g., SLAs) specifications of the involved services and the model of the service
composition (i.e., BPEL specification), define also various requirements that regulate the correctness
and quality of the application execution. These requirements may refer to the time properties of the
overall process or of its constituent parts, constraints on the execution termination, costs, etc.

4.2 Adaptation and Monitoring Problem

Service-oriented applications (SBA) are deployed in dynamic and distributed settings. Due to these
factors and also due to the fact that many aspects (like external services) are out of the control of the
SBA developer, the applications are often subject to different failures and violations of the application
requirements. These violations, even if properly handled and identified afterwards, may lead to the
negative consequences such as contractual penalties. To avoid these situations, proactive adaptation is
often needed.

In order to deal with these settings such applications are often provided with adaptation capabilities to
react to failures during their operation. Failures can be for example unexpected changes of third party
services. Failures can cause requirement violations, what might lead to negative consequences (e.g.
contractual penalty). Thus, an SBA should be able to adapt proactively. The scope of the scenario is to
be able to anticipate the needs for adaptation and to provide the corresponding monitoring and
adaptation support in order to enable proactive adaptation of service-based business processes in case
of failures and requirement violations.

The proactive behaviour of the adaptations we foresee in our scenario is of two forms. First, it is
possible to adapt a single instance of the application, i.e., a single instance of the business process.

3

5

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 35

This happens when while executing a business process instance, it becomes evident that the
subsequent execution will lead to the violations, and therefore there is a need to perform some changes
in the running instance that would allow avoiding that. Second, it is possible to change the way the
new instances of the process are executed. This takes place when one understands that the way the
process instances operate is not optimal, there are new more efficient opportunities, or there are
changes that require revision of the process implementation. This latter scenario refers more to the
evolution of the business processes rather than adjusting running instances. It is important to remark,
however, that also in this case the adaptation of the process model happens continuously, without
bringing the application out of the production mode.

Another important aspect the scenario takes care of concerns unnecessary adaptations. In many cases
the adaptation is carried out in case of certain events even if the overall requirement is not violated. To
avoid such adaptations, different run-time techniques are necessary that analyze the need of adaptation
in every concrete case.

4.3 Overall Approach

The idea that distinguishes the approach in this integrated scenario is based on the use of assumptions.
An assumption represents some expectation regarding the elements of the SBA that are not under
control of the process owner. More specifically, we refer to the assumptions regarding the properties
of the third-party services captured with their SLAs, service interfaces and protocols captured with
their specification under certain version, the assumption regarding the infrastructure involved (e.g.,
network throughput, use of the underlying resources, etc.). In the following figure the variable a1
depicts an assumption about Service 1. m1 is the monitored data.

Figure 4 Assumptions about Services

The important aspect of the assumptions in our scenario is that the assumptions are used to relate the
continuously monitored data to the SBA requirements. In particular, we exploit monitors to check
whether the assumptions are still satisfied, and, in case of violation of a particular assumption, we
perform immediate checks whether the overall requirement is violated, given the already known
information and the assumptions about parts of the process that have not been executed. For the above
example: if assumption a1 about service 1 is violated by monitoring data m1, we then check whether
the requirement is violated given m1 and the assumption a2 about the not yet invoked service 2.

Currently, in the scenario we consider the following forms of adaptations. In case of an external
service we request the service repository to provide an alternative service or re-negotiate the SLA
associated with that service. In case of the internal service we can influence the infrastructure, on
which the service is executed (SI layer). In case of necessity to recover the process, we perform
process adaptation, where the new subprocess is automatically composed in order to bring the process
back to the normal execution or to perform some recovery/compensation activities.

3

6

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 36

4.3.1 Refined Architecture

The architecture of the solution is represented in Figure 5. The application, i.e., business process is
running within the process engine that communicates with the services through an Enterprise Service
Bus (ESB), that routes the invocation of services and at the same time serves as an aggregation point
for different types of events from different sources (e.g., from service calls, process engine, etc). The
service invocation is operated by the proxy service component that enables dynamic rerouting of
requests to different services. The information about available services and their current properties is
stored in the service repository.

To coordinate these actions we use agent. The agents of the built-in multi-agent platform are
controlling the adaptation loop: they control the monitoring, act on adaptation needs, decide on
adaptation strategy and instrument the effectors to perform the adaptation. This can be seen as an extra
layer on top of the existing components of the SBA (not depicted in Figure 5).

Figure 5 Architecture of the scenario

Monitoring
The key monitoring component is SALMon (cf. [12,29]). SALMon is used to monitor assumptions
regarding the different properties of individual services. This includes both functional (e.g., service
interface, protocol, signatures, etc.) and non-functional properties. With respect to the latter, SALMon
is able to (1) monitor the QoS of services in a SBA and (2) check if the retrieved QoS fullfils the SLOs
stated. In order to be easily integrable with other technologies, SALMon has been implemented as an
SBA by itself, providing two services:

 Monitor service: to retrieve the QoS data of a service. The monitor service provides an

interface to define what the quality metrics to retrieve in a SBA are (e.g: Response Time of

service S1).

 Analyzer service: used to check on runtime if a given service fulfills the expected SLOs. It

provides an interface to define the conditions to be checked in a SBA.

3

7

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 37

Besides, the monitoring framework makes use of measure instruments, which are the components that
implement the logic needed in order to obtain the value of a concrete quality metric (e.g: Response
Time, Availability,…) of a service. They are located in a module installed in the ESB and managed by
the Monitor.

Additionally to SALMon, other monitoring solutions may be considered to evaluate more complex
properties, such as [13].

Adaptation Needs Engine
If a violation of the stated conditions occurs, the Analyzer notifies it to the corresponding component,
in this case, the Specification and Assumption Based Detection (SPADE). The information given in the
notification is the identifier of condition stated and the value of the metric that is violating the
condition. In other words, the notification represents the violated assumptions and the corresponding
data.

When the assumption is violated the SPADE component is used to evaluate the impact of the violated
assumption on the corresponding application requirement. This check allows us to reduce amount of
unnecessary adaptation.

The SPADE component actually represents a set of components, each having its own mechanism for
the verification of the requirement. In particular, the following decision mechanisms are used:

 Run-time verification of the process model against KPI requirements [14]. Here the properties
related for example to the execution times of the process are checked given the (BPEL)
process model, the current state of the process the assumptions regarding the remaining
services and the time currently spent (resulting from service monitoring).

 Evaluation of changes in external service interfaces and protocols [15]. In this case a special-
purpose analysis is performed in order to estimate whether the impact of change is substantial,
and therefore the new version of a service require appropriate changes in the service
composition. If this is the case, the SPADE may trigger evaluation of the SBA, while keep
using the old version of the service (if available) or switch to other service (if old version is
not available). If the change does not harm the application, it is also possible to switch to the
new version of the service.

 In case of violation of process context assumptions, the additional activities may be necessary
in order to bring back the process to its expected context and/or to perform additional recovery
and compensation activities [16]. The analysis of the context assumptions is performed based
on the context properties associated to the overall application and to the specific subprocess
executed currently. If the assumption is violated, the adaptation requires the process to get
back to the normal execution by composing a new process that may change the critical
properties as it is required by the process specification.

As an outcome of the analyses the SPADE framework passes to the adaptation strategy engine the
specific input that depends on the concrete SPADE component that triggers adaptation. In particular,
the first element may trigger service replacement or SAL renegotiation; the second one may trigger
process model evolution or service replacement; the third one requires new service composition to be
provided in order to bring the process to its normal execution context; finally the service infrastructure
could be adapted, thus having an impact on non-replaceable internal services.

Adaptation Strategy Engine

The adaptation strategy engine is implemented as a multi-agent platform providing intelligent
background control for the execution environment (cf. [27]). Business process instances are
represented by individual Process Agents responsible for the proper and timely execution of the

3

8

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 38

processes. On the other hand, services are represented with Service Agents responsible for ensuring
the availability of the services. These agents can be grouped according to customers, providers, etc.
Agents implement intelligent behaviors and negotiation with each other in order to collect available
information and make decisions on adaptation strategies.

Service Agents are instantiated by the service infrastructure, and they collect information on various
QoS measures of the service. Based on the collected information, they send concrete adaptation
solutions on request to Process Agents. Upon agreement, the Service Agent instructs the Adaptation
Enactment engine to execute the selected adaptation method.

The Process Agents are instantiated by the adaptation extension of the Business Process execution
engine before the process starts. The monitoring component triggers the responsible Process Agent
whenever a deviation from the agreed SLA is forecasted. In this case, the Process Agents broadcasts a
request for an adaptation solution to Service Agents, which, in turn, respond with their offered
adaptation solution. The Process Agent can decide on which offer to take, based on the strategy
implemented in its behavior and by using SPADE. By invoking SPADE the Process Agent assures the
adherence to the SBA requirements. The Process Agent selects and notifies a Service Agent.

In the next phases the adaptation strategy engine may be equipped with the specific approaches that
aggregate and coordinate different, possibly alternative, adaptations into a single strategy prioritized
according some predefined criteria.

Adaptation Enactment Engine and Adaptation Capabilities
Once the selected Service Agent is notified, the proposed change is enacted. The enactment of the
adaptation strategy can be accomplished through the following adaptation activities:

 Service replacement. To perform service replacement, the service repository is involved. In
particular, the request for service replacement is transformed into the query to the runtime
service discovery tool. The identification of alternative services is based on various
characteristics of the published service such as structural, behavioural and quality
characteristics that services should have in order to be acceptable replacements for a
constituent service. These characteristics are specified in service discovery query where a
query is associated with each of the constituent services of the service based system. The
service discovery tool operates also in proactive mode, where the query is executed in parallel
with the operation of the service based system in order to discover and maintain a set of
candidate replacement services for the constituent services. The actual service replacement is
performed via proxy component will route the abstract activity invocations within the SBA to
the required services. The proxy server has been implemented as an HTTP server using Java
socket programming. It receives calls from the service-based system when a participating
service needs to be invoked and reroute the SOAP-messages to the alternative service, picked
from the Service Repository.

 SLA re-negotiation. SLA negotiation broker performs SLA negotiation for each candidate
service identified by the service discovery tool. In this process the desired level of service is
negotiated with the selected candidate service. In this phase, the QoS characteristics of each
candidate service are negotiated in order to achieve the best possible SLA for the services that
is within the boundary constraints of the service provider and the consumer. Similar to service
discovery process, the negotiation process can be either reactive or proactive. The framework
allows to specify negotiation triggering rules, that determine the circumstances under which
the negotiation of new service level agreements should start (e.g., when a provisionally agreed
SLA is about to expire, or change in the requirement of SBS). Once an SLA comes into force,
its guarantee terms and negotiation triggering rules become subject of monitoring. If the
monitoring process detects violation of the SLA or the deployed service becomes unavailable
then the service is replaced by the best candidate service identified in the service discovery
process. The detection of violation of the conditions in negotiation triggering rules triggers the
renegotiation/negotiation to establish a new SLA.

3

9

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 39

 Process adaptation. When the process should be adapted in such a way that the business
process can be brought back to its normal execution, the adaptation activity consists of
generating a new composed subprocess that performs the necessary modifications in the SBA
environment. To accomplish this planning techniques are exploited. In particular, the
composition planner takes as input the model of relevant services available, the current state
of the process, the expected context configuration, and the additional requirements that
characterize eventual recovery requirements. Based on that input a new process is generated
that allows to get back to the same execution point in the process but also perform the
necessary modifications in the SBA domain through the invocation of appropriate services.
After that the special orchestrator component executes the new subprocess, and, if it
terminates successfully, resumes the execution of the main process.

 SI Adaptation. Usually more than one external service expose a specific functionality, needed
to meet the SBAs requirements. Adaptation capabilities like service substitution presume
those redundant service facilities. In case of internal services we are facing the problem, that
those services are instantiated usually once. In order to achieve a higher flexibility, we
propose to influence the infrastructure of those internal services. E.g., in order to catch up lost
time, caused by former service failures, the execution speed of an internal service could be
increased, by assigning more CPU time to this service (SI layer).

4.3.2 Refined SBA Life-Cycle

Below we will present the key phases of the SBA life-cycle that are relevant for the scenario.

Figure 6 Approach along the S-Cube Life-Cycle

Starting with the Requirements Engineering phase the requirements are elicited and specified using
template-based documents as introduced in [17]. Next, the application designer formalizes the elicited
SBA requirements for example in ALBERT.

In the Design Phase service candidates are selected. Moreover, the SBA is specified in a service
composition language such as BPEL [11]. Together with the main process, the specific recovery and

4

0

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 40

compensation rules are defined. Besides, at the design phase the relevant context properties are
modelled; the services are related to these properties through preconditions and effects as specified in
[16].

During the Realization phase the key activity for our scenario is the definition of the SBA
assumptions and the definition of an adaptation strategy. In addition, the multi agent platform is
configured.

As for the service assumptions, the first step is to perform the initial SLA negotiation for each
constituent service used in the BPEL specification. The SLA negotiation process takes into account
the negotiation rules specified by the application designer and this process is carried out by exploiting
the technique described in [18,19]. In order to enable the exchange of services a set of potential
alternative services for each of the constituent service is identified and a pre-agreed SLA is established
with each identified service. The service discovery is driven by the discovery queries specified in the
evolution phase [18,19]. Based on the negotiated SLAs the assumptions are derived.

As for the SBA context, the assumptions associate to different parts of the process specific context
configurations under which the part may be executed.

The configuration of the multi agent platform comprises the definition of adaptation strategies. For
this purpose the platform must have knowledge about the adaptation capabilities and the structure of
the business process. Furthermore, the agent platform must have an access to the application
requirements and to SPADE. The latter access is necessary, as during runtime the multi agent platform
instruments SPADE to check whether after the proposed adaptation the requirements will be still met.

In the Deployment & Provisioning phase the developed application is check against its requirements.
The SBA is formally verified to ensure that it satisfies the requirements under the given assumptions.
To accomplish this one can apply, for example, the mechanisms described in [12] for this formal
verification. If the designed application passes the formal verification, the application is ready for
deployment.

After deployment the SBA is executed, which is called the Operation & Management phase. During
this phase several mechanism are executed:

 The Service Repository checks for alternative services permanently.

 During the SBA runtime the adherence to the assumptions is monitored using SALMon. If a

violation of an assumption is detected, SPADE performs a runtime analysis, as the application

might violate the SBA requirements (cf. [14]).

In order to Identify Adaptation Need[s] the SPADE approach is applied. It performs a runtime re-
verification of the service based application is performed to check, whether the application still
satisfies the overall requirements. The workflow specification, the monitoring data of the invoked
services and the assumptions of the not yet invoked services are checked against the requirements. If
the service based application fails to pass the analysis, an adaptation of the service based application is
necessary.

After SPADE identified the adaptation need, an appropriate adaptation strategy must be identified,
which is performed during the Identifiy Adaptation Strategy phase. The agents are proposing a
strategy, which includes the invocation of at least one adaptation capability. In order to check if the
requirements are still met, the agents instrument SPADE. If this is the case the adaptation is enacted.

Finally the agent based adaptation engine Enact[s] [the] Adaptation executes the adaptation strategy.
The available adaptation capabilities are invoked, such as service replacement, SLA negotiation,
process adaptation, and even process model evolution.

4

1

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 41

4.4 Individual Contributions

4.4.1 Proactive SLA Negotiation for Service Based Systems

Title Proactive SLA Negotiation for Service Based Systems

Authors Khaled Mahbub and George Spanoudakis

Type Methodology / Technique

Short Description This work proposes a framework for proactive SLA negotiation that
integrates this process with dynamic service discovery and, hence, can
provide integrated runtime support for both these key activities which are
necessary in order to achieve the runtime operation of service based
systems with minimised interruptions. More specifically, our framework
discovers candidate constituent services for a composite service, establishes
an agreed but not enforced SLA and a period during which this pre-
agreement can be activated should this become necessary

Adaptation and Monitoring Problem

Contribution to the adaptation problem The proposed approach ensures that a service, which
could be potentially used as a replacement service to
adapt a service based system (SBS), will have an
agreed set of guaranteed provision terms if the need to
deploy it arises at runtime. Hence, when this need
arises it will not be necessary to engage in a lengthy
negotiation process interrupting the operation of the
service based system. Therefore this approach
facilitates proactive adaptation of service based
systems.

Contribution to the monitoring problem --

Refined Architecture

4

2

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 42

Architecture elements The runtime service discovery tool is
used to identify potential alternative services
for the services that an SBS uses currently.
The discovery process is driven by service
discovery queries. These queries are
associated with each of the constituent
services of the SBS and specify the conditions
that should be satisfied by any service that
could replace them in the SBS. These
conditions can refer to the structural
(interface), behavioural, contextual, and
quality characteristics that services should
and, therefore, provide the criteria for
discovering candidate constituent services.

 The negotiation broker is the
component that manages the negotiation
process on behalf of a service consumer (i.e.,
the composite service) or a service provider.
Negotiation brokers are responsible for
negotiating and agreeing the guarantee terms
of an SLA. The negotiation process can be
either reactive or proactive. In proactive
negotiation, the negotiation process is carried
out according to a two-phase protocol that
may result in a provisionally agreed SLA but
not activated SLA or negotiation failure. In
reactive negotiation, the negotiation process is
executed according to a single phase protocol
that can result in an agreed and activated or
negotiation failure.

 A monitor is used to detect if the SLA
guarantee terms which should apply to the
provision of a service are satisfied.

Requirements/Constraints Monitoring of the SLA terms requires runtime
collection of quality metrics.

Refined SBA life-cycle

Life-cycle activities Construction: specification of
service discovery query, negotiation
rules.

 Operation and Management:
identification of alternative services,
negotiation of SLA, monitoring of
enforced SLAs.

 Identify adaptation strategy:
identification of best possible
alternative service for a service to be
replaced in SBS.

Open problems and possible extensions

4

3

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 43

Open problems and extensions Thorough experimental evaluation of
the framework

 Support for proactive negotiation of
hierarchical SLA.

 Dynamic adaptation of negotiation
rules, i.e. negotiation rules can be changed
during negotiation process.

Extended abstract

This paper proposes a framework that integrates service discovery and monitoring of service in order
to facilitate proactive SLA negotiation. The service discovery process is used by service consumer
applications (i.e service based systems) in order to identify potential alternative services for the
services that they currently use. The identification of alternative services is based on various
characteristics of the published service such as structural, behavioural and QoS specified by the
service consumer. Proactive SLA negotiation is weaved into the discovery process as an activity that
is performed after the execution of the service discovery query and constitutes an extra check prior to
putting a service into the replacement set. The objective of proactive negotiation is to establish an
agreed but not enforced SLA and a period during which the consumer of the service will be able to
activate the pre-agreement should this become necessary. Following this, the relevant candidate
constituent service can be inserted in the replacement set. The negotiation process is carried out
according to a two-phase protocol that may result in a provisionally agreed SLA but not activated SLA
or negotiation failure. A provisional SLA is a service level agreement that has been agreed by service
consumers but has not been activated yet. Such SLAs may be open ended or have an expiry date by
which they will either have been activated or cease to exist. In the negotiation process, desired level of
service and other individual or collective issues (e.g. penalty, SLA time frame) are negotiated with
each alternative service. It should be noted that a service consumer may specify the bottom line of
various QoS characteristics in the service discovery query that enables the service discovery process to
identify potential alternative services. But in the negotiation phase, each alternative service is
negotiated over the QoS characteristics in order to identify a service that fulfils the service consumer’s
(and also service providers’) requirements in optimal way. The monitoring process monitors the
runtime behaviour of the service provider and the service requester in order to detect if the agreed
SLA is satisfied. If the monitor detects violations of the SLA or detects situations that requires
proactive negotiation then the monitor triggers the framework to initiate a renegotiation. The
negotiation process is also repeated when a pre-agreed SLA comes close to expiry and, therefore, it
has to be renegotiated.

We have an initial implementation of the framework. The current implementation of the framework
includes a negotiation broker for a rule-driven negotiation engine that we have developed based on
Jess rule engine. All the major components of the framework (i.e., the negotiation brokers, runtime
service discovery tool, and service listeners) have been implemented in Java.

4.4.2 Evolving Services from a Contractual Perspective

Title Evolving Services from a Contractual Perspective

Authors V.Andrikopoulos, S.Benbernou, M.P.Papazoglou

Type Model/Methodology

4

4

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 44

Short Description Uncontrolled changes can easily break the existing relationships between a
service and its environment (its customers and providers). In this paper we
present an approach that allows for the controlled evolution of a service by
leveraging the loosely-coupled nature of the SOA paradigm. More
specifically, we formalize the notion of contracts between interacting
services that enable their independent evolution and we investigate under
which criteria can changes to a contract-bound service, or even to the
contract itself, be transparent to the environment of the service .

Adaptation and Monitoring Problem

Contribution to the adaptation problem With respect to the adaptation problem of the scenario,
the work focuses on the evolution of services. It is the
case where the internal service influences the
infrastructure, on which service is executed. The
adaptation action takes place under different versions
of services.

Contribution to the monitoring problem Continuously monitored data to the SBA requirements
through different service versions.

Refined Architecture

Architecture elements Monitor: functional properties i.e.
interfaces, protocols and signatures are
monitored using SALMon.

 SPADE: Evaluation of changes in
external services interfaces and protocols is
handled in this component.

 Adaptation strategy: Impact of
changes is performed. Either the old version of
service is kept or switch to other service if
change harms or not the application.

 Adaptation enactment engine: The
implementation deals with performing various
changes regarding a contract.

Requirements/Constraints The approach relies to shallow changes in a contract
through different versions.

Refined SBA life-cycle

4

5

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 45

Life-cycle activities Requirements Engineering: Definition
of requirements in a contract (interfaces,
behavior)

 Realization: Service versioning based
changes discovery.

 Operation and management:
monitoring the changes.

 Identify adaptation needs: SPADE
triggers adaptation for external services.

 Identify adaptation strategy:
identification of service evolution strategies.

 Enact Adaptation: it is the case of
external services: re-routing of messages to
alternative service.

Open problems and possible extensions

Open problems and extensions - Integration of other types of
adaptations.

- Analysis of impact deep changes.

Extended abstract

The goal of this work is to allow the independent evolution of loosely coupled interacting parties in a
transparent manner so as to preserve their interoperability. In this context, the parties involved in an
interaction can either be services, or services and client (service-based) applications. We only consider
bilateral interactions, and for each such interaction we distinguish two roles: that of the producer and
that of the consumer. It must be kept under consideration that the role of a service, unlike that of an
application that always acts as a consumer, can vary depending on the interaction. An aggregate
service for example plays both roles: that of the producer for its clients, and that of the consumer when
it interacts with the aggregated services to compose a result. To achieve meaningful interoperability in
this context, service clients and providers must come to a mutual agreement, a contract of sorts
between them. A contract of this type formalizes the details of a service in a way that meets the mutual
understanding and expectations of both service provider and service client. Building around this idea,
we are presenting mechanisms to effectively deal with the evolution of the structural aspect of both
parties, while preserving interoperability despite the changes that may affect them. After we lay down
this foundation we discuss the evolution of interactions and contracts themselves.

We introduce the contract construct as the means to leverage the decoupling of the interacting parties.
We present a contract constructing function that bridges the gap between service matching and service
mapping. Following on, we build on contractual invariance and contractual evolution to show how to
effectively deal with shallow changes to the service provider and client interaction - without the need
for adaptation which may lead in turn to deep changes.

4.4.3 Adaptation of Service-based Business Processes by Context-Aware

Replanning

Title Adaptation of Service-based Business Processes by Context-Aware
Replanning

Authors Antonio Bucchiarone, Raman Kazhamiakin, Marco Pistore and Heorhi
Raik

4

6

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 46

Type Technique

Short Description This work contributes to the scenario on assumption-based proactive SBA
adaptation. Specifically, the presented approach focuses on modeling and
monitoring business process context assumptions to timely trigger process
adaptation and recovery. The work focuses on the modeling and adaptation
parts. The adaptation is performed completely at run-time using automated
service composition techniques.

Adaptation and Monitoring Problem

Contribution to the adaptation problem With respect to the adaptation problem the approach
contributes with explicit model of context properties
and context assumptions to drive the execution and
proactive adaptation of the processes. Specifically,
before executing the activities the approach controls
that the context state corresponds to the defined
context assumptions, and, in case of violations, triggers
process re-planning using automated service
composition.

Contribution to the monitoring problem This approach contributes to the monitoring problem
with the model of context properties to be observed
and their changes.

Refined Architecture

Architecture elements SPADE framework : the relevant
component controls the evolution of context
and context assumptions.

 Adaptation Strategy Engine: the
strategy is defined as the adaptation planning
problem that includes the state of the context,
of the process and of the service, the model of
domain (assumed context model and services),
and the target context state.

 Adaptation Enactment Engine: using
the automated planning the adaptation problem
is solved resulting a new sub-process to be
executed to bring the process to a normal
execution mode.

 Process Adaptation mechanism: the
extension of the process engine component to
control and block the normal execution of the
process to enable context checks and injection
of new adaptation subprocess.

Requirements/Constraints Requires the ability to query and monitor business
context state.

Refined SBA life-cycle

4

7

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 47

Life-cycle activities Requirements Engineering: Definition
of coordination requirements.

 Design: definition of service context
policies and context effects.

 Operation, Management, and QA:
context monitoring.

 Identify adaptation needs: validation of
context assumptions.

 Identify adaptation strategy: extraction
of the adaptation problem definition.

 Enact adaptation: construction and
execution of adaptation sub-process using
automated service composition techniques.

Open problems and possible extensions

Open problems and extensions more sophisticated mechanisms that
provide different ways to react at unexpected
situations.

 evolution mechanisms order to
progressively improve processes instances that
may then be used if a new process model shall
be instantiated.

Extended abstract

Operating in open and dynamic environments, business processes often need to be adapted during the
execution to react to changes and unexpected problems. The paper presents an adaptation approach
that aims at addressing dynamic adaptation of business processes in case of unexpected business
context changes. The approach relies on the following key elements:

 Context-aware model of the application. We explicitly model the business context, in
which the process operates, and describe how the services and policies of the application are
related to the context and its changes.

 Context-aware execution framework. While executing business process, the process
context is continuously monitored in order to check whether it changes as expected by the
policies and service specifications.
 Context-aware adaptation based on automated service composition. If a critical

context change is detected, the adaptation tries to recover the process. This is achieved
through construction of a composite service that, starting from the actual context state,
performs the necessary changes in the domain to bring the process and its context to the
expected state.

 Context model. The paper presents an explicit model of the context that consists of:
context property diagrams that model context properties and their evolution (represent
possible values of the property and the changes of the property values as transitions);
service effect annotations to model how the services change the context, i.e., how the
service changes the property value; business policies over the services to state in which
context setting the service may be executed (annotating services with the preconditions on
the context property values).

 Execution framework. The execution and adaptat ion of the reference process is
controlled and coordinated by the Orchestrator component: based on the analysis of the
current context and its changes, it decides whether to proceed with the execution or to
perform the adaptation. When the observed values of the context properties violate the
preconditions of the next activity to execute, the process adaptation is initiated. The Adaptor

4

8

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 48

component generates the new subprocess, which aims to do its best to “recover”, so that the
blocked activity can be executed and the main process can continue. Orchestrator starts the
execution of the generated subprocess and then continues the execution of the main process.
If during this execution a violation of context assumptions is detected again due to
exogenous contextual changes, a new round of adaptation is undertaken. To accomplish the
required adaptation, Adaptor generates a composition of those services, which, being
executed together, achieve the necessary effect on the context. The construction of the
composition is performed with the use of automated planning techniques: the service
specifications, the model of context (i.e., context diagrams), and the goal specifications are
transformed into the planning problem and the resulting plan is then transformed into the
composed service.

4

9

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 49

4.4.4 Towards Proactive Adaptation: A Journey along the S-Cube
Service Life-Cycle

Title Towards Proactive Adaptation: A Journey along the S-Cube Service Life-
Cycle

Authors Andreas Metzger, Eric Schmieders, Cinzia Cappiello, Elisabetta Di Nitto,
Raman Kazhamiakin, Barbara Pernici and Marco Pistore

Type Methodology / Technique / Experimental Evaluation

Short Description The proposed approach is both a technique, as it facilitates the adaptation
need identification on a technical level, as well as a methodology, as it
proposes a process model which aims for producing the necessary artefacts
during design time.

Adaptation and Monitoring Problem

Contribution to the adaptation problem The approach exploits run-time verification
capabilities during the operation of service-based
applications. It thereby provides a considerable
improvement for what concerns the number of false-
positive adaptation triggers when compared to state-
of-the-art techniques.

Contribution to the monitoring problem -

Refined Architecture

Architecture elements Designtime methodology: The approach
suggests a process model along the phases of
the SBA life-cycle model as elaborated by the
S-Cube project. For an SBA to quickly and
dynamically adapt to changes in service
quality, the relevant artefacts, as well as the
properties of the SBA and context are
formalized during its design time to make
them amenable to automated checks and
decisions during run-time.

 Identification of adaptation needs: If an
assumption A (derived from an SLA) is
violated, the approach checks, whether the
requirements R are still satisfied. Beside the
assumptions and the requirements, the
approach uses the workflow specification S
and the monitored data M to identify
adaptation needs.

Requirements/Constraints The approach assumes that SLAs exhibit reliable
QoS-values in order to determine the adaptation
needs.

Refined SBA life-cycle

Life-cycle activities Requirements Engineering: formalisation of the
KPIs/SBA requirements

 Design: creation of the BPEL workflow

 Realization: SLA negotiation with bound
services

 Deployment & Provisioning: deployment check;

5

0

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 50

the assumptions and the workflow
specification is checked against the
application formalized requirements

 Operation & Management: monitoring of single
SBA instances; check if the assumptions are
violated

 Identify adaptation needs: execution of the
SPADE check in order to determine
requirement violations

Open problems and possible extensions

Open problems and extensions The present approach does not covered all possible
control constructs available to build SBAs (such as
loops and forks).

There are many techniques which monitor individual services. However, using these techniques to
trigger adaptations is prone to false positives. As an example, let us assume that the invocation of a
service B takes 450 ms instead of an expected maximum of 400 ms. This failure is observed by means
of monitoring and leads to an adaptation of the SBA. However, the overall response time would still
have met the required end-to-end response time even if no adaptation would have been performed. In
this case an adaptation was triggered although it was not necessary, i.e. monitoring led to a false
positive adaptation trigger.

The present approach suggests a process model along the phases of the SBA life-cycle model as
elaborated by the S-Cube. For an SBA to quickly and dynamically adapt to changes in service quality,
the relevant artefacts, as well as the properties of the SBA and context are formalized during its design
time to make them amenable to automated checks and decisions during run-time. If an assumption A
(derived from an SLA) is violated, the approach checks, whether the requirements R are still satisfied.
Beside the assumptions and the requirements, the proposed approach uses the workflow specification
S and the monitored data M to identify adaptation needs.

Extended abstract

5

1

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 51

5 Context-based Adaptation and Monitoring

5.1 Application Model

In this scenario we primarily focus on SBAs, in which the context of those SBA plays the key role in
the various activities across the SBA life-cycle. A typical example of such applications is the one of
the user-centered applications based on services and service compositions. In this application, a user is
equipped with the possibility to perform different actions realized as services or service compositions,
that should be customized to accommodate the specific context of the user, being his physical context
(e.g., location) preferences (e.g., his role), and operational settings (specific services available). Very
often these applications are made available on top of mobile devices, thus bringing additional
infrastructural dimension to the SBA stack.

Along with the typical element of SBA that include the model of processes available, the realizing
service compositions, and the infrastructure where the application is running, the key component of
the application model refers to the SBA context and how this context influences the SBA functioning
and management. A context model may capture all the dimensions that could trigger adaptation; six
dimensions were identified to fulfil this need: Time, Ambient, User, Service, Business and
Computational [24]. Moreover, the context model may be traversal with respect to the application
model and may capture the properties of different functional SBA layers.

5.2 Adaptation and Monitoring Problem

The distinguishing factor of the above application refers to the fact that these applications operate in
continuously changing environments. That is, the same application shall operate differently for
different user roles with different preferences, and should run on different devices and consider
different services available, etc. Indeed, these changes may require the adjustment of the application to
better fit the new settings. But besides requiring the application to be context-aware and to adapt the
changes in the context, the way the application is managed should also take into account different
settings. In particular, the way the application is monitored and adapted (in case of failures, changing
user requirements, etc.) should also follow the changes in the context in the SBA

Context-driven monitoring refers to the following problem. When context changes, the way the SBA
is monitored may change as well, since the new settings may require, e.g., specific information to be
collected or as different elements become part of it. To accomplish this it is necessary to be able to
adapt the monitoring specification in reaction to context changes.

Context-driven adaptation refers to the fact that same adaptation is made differently in different
contexts. For example, the service selection performed when an SBA user deals with his personal
activities (e.g., select cheaper hotel/flight services while organizing personal tr ip) it is different from
corporate activities (select more reliable and faster services). The issue here is to be able to identify
proper adaptation strategies and capabilities when the SBA context changes.

Different strategies and mechanisms could be enacted, depending on the context change occurred;
some patterns should be defined in order to define such relationships. What has to be done is to define
the adaptation strategy selection mechanisms as well as the adaptation mechanisms themselves that
explicitly take into account the contextual changes at different functional layers and across them.

5.3 Overall Approach

The approach exploited within this integrated scenario relies on the use of templates that characterize
the monitoring and adaptation activities in general settings, which are then instantiated in different
way for the specific contexts. For example in case of monitoring specification the templates dictate the
generic rules that are parametric with respect to the context properties [26,27]. Given t he concrete
context, the specific template that fits better the concrete environment is instantiated. Similarly, the

5

2

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 52

adaptation rules may be specified with the generic patterns that are conditional with respect to the
contextual properties [24].

More specifically, for the adaptation of monitoring specification, the approach is to define and exploit
monitoring templates that characterize the monitoring problem in general terms, and that can be
instantiated in a specific way in different contexts. The key challenge here is to support and automate
the process to reduce to a minimum the adaptation effort.

In case of adaptation we consider the generic framework presented in [24]. In this framework,
different adaptation strategies are explicitly associated to the different context dimensions and
properties, thus defining which form of adaptation are allowed or preferred in case of different
contextual changes. This model may be refined by explicitly associating the adaptation activities (i.e.,
the adaptation template) with the specific context properties (i.e., specific user role, device,
preferences, locations, etc.).

5.3.1 Refined Architecture

The overall architecture is represented in Figure 7.

Figure 7 Approach along the S-Cube Life-Cycle

As is clear from Figure 7, the main components of the architecture are the following:

 Monitors are needed to observe the status of the application and to detect changes in the user
and business context.

 Adaptation policy engine: Events are generated when context changes are identified and then
they are sent to the adaptation policy engine.

 Pattern selection and instantiation: Context changes could lead to adaptation in the
monitoring specifications, since the way the SBA is monitored may change or in the

5

3

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 53

application behaviour, since the way the SBA behaves needs an adaptation. If an adaptation is
needed, the related pattern have to be selected. In particular, triggers could be enacted and an
adaptation strategy could be chosen according to a certain event. Different strategies could be
defined and the choice of the best strategy is led to an adaptation reasoner.

 Adapation engine: the adaptation mechanism related to the context changes should be
enacted.

5.3.2 Refined SBA Life-Cycle

The proposed scenario fits well on the SBA life-cycle proposed in S-Cube as it covers all the phases of
the lifecycle and includes several stakeholders. Each phase is characterized by different stakeholders
having different goals.

In the Requirement Engineering and Design phase a user-centric context model is defined that
attempts to capture all the main factors able to define the context for a SBA; in particular the context
model aims at formalizing the user and application context. The dimension so the context model
covers all the aspects that could be useful for the definition of the status of the application.

Information about the context could be exploited during the lifecycle in order to decide if an
adaptation action is needed or necessary; this is made possible by the design of context monitor and
reasoner. Besides the definition of a context model, monitoring patters are defined in such phase
defining how monitoring specification could change on the basis of the context.

Figure 8 Approach along the S-Cube Life-Cycle

5

4

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 54

During the Construction phase, contextual monitors and adaptation mechanisms are developed and
then deployed in the Deployment & Provisioning phase.

During the Operation and Management phase the application context is monitored in order to decide
if an evolution or adaptation activity needs to be performed: adaptation could impact on the
application or on the monitoring rules. If a context change is detected, it has to be checked if the
application, the monitoring specification and the monitoring data fulfill the requirements and if the
context change needs an adaptation (in the Identify Adaptation Needs phase). Then, during the phase
of Identify Adaptation Strategy a suitable adaptation strategy has to be chosen and finally the
adaptation mechanism should be enacted (in the Enact Adaptation phase).

5.4 Individual Contributions

5.4.1 A Pattern-based Approach for Monitor Adaptation

Title A Pattern-based Approach for Monitor Adaptation

Authors R. Contreras, A. Zisman

Type Model

Short Description The work presents a pattern-based approach to support monitor adaptation:

adaptation of monitor rules used by a monitor tool. The work focuses on monitor

adaptation due to changes in the context characteristics of the user interacting with

the system and the set of services used by the system. The monitor adaptation is

based on the use of patterns represented in Event Calculus for d ifferent user context

types including: ro le, skills, needs, preferences, and cognition, as well as location,

time, and environment.

Adaptation and Monitoring Problem

Contribution to the adaptation problem With respect to the adaptation problem of the scenario
the work focuses on the adaptation of the monitor
driven by user context types, user interaction, and
changes in the service composition.

Contribution to the monitoring problem Identification of user context types. Ontology and
XML-based user models to represent HCI context
types. Definition of patterns for specifications of
monitor rules

Refined Architecture

Architecture elements --

Requirements/Constraints Monitor Rules and Patterns should be
expressed in Event Calculus

 The approach relies on the use of patterns for
the different context types

 There should an event representing the
interaction of the user with the system

 There should be models to represent user
information

Refined SBA life-cycle

5

5

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 55

Life-cycle activities Requirements Engineering: Context types
definition, User Context Ontology

 Construction: creation of patterns for different
user context types

Open problems and possible extensions

Open problems and extensions Support automatic identification of monitor
rules, modifications of monitor rules, and creation
of new monitor rules

 Acquisition of user context types

Extended abstract

In this work we present a pattern-based approach to support monitor adaptation, i.e. adaptation of the
monitor rules used by the monitor system. More specifically, our approach is concerned with HCI-
aware monitor adaptation in which changes in the monitor rules are based on user’s interaction with a
service-based system and different types of user context. The user context information includes role,
skills, needs, preferences, and cognitive information of the user represented in user models based on
an ontology we have created.

There are very few approaches for service-based system monitoring and adaptation that consider user-
based context. The ontology presented in our work aims to represent the various types of user context.
From the ontology it is also possible to represent XML-based user models to support description of the
characteristics of the users. We have additionally created patterns for monitor rules representing the
different user context types. These patterns are used as templates for the monitor rules.

5.4.2 Identifying, Modifying, Creating, and Removing Monitor Rules for
Service Oriented Computing

Title Identifying, Modifying, Creating and Removing Monitor Rules for Service
Oriented Computing

Authors R. Contreras, A. Zisman

Type Technique / Framework / Experimental Evaluation

Short Description The work presents a pattern-based HCI-aware monitor adaptation
framework to support identification, modification, creation, and removal of
monitor rules. In the framework, changes in the monitor rules are based on
user’s interaction with a service-based system and different types of user
context such as role, skills, cognition, needs, and preferences. The work
also presents the experimental evaluation of the approach.

Adaptation and Monitoring Problem

Contribution to the adaptation problem Adaptation of monitoring component in reaction to
user context changes

Contribution to the monitoring problem Identification, modification, creation and removal of
monitor rules

Refined Architecture

5

6

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 56

Architecture elements Rule Adaptor: responsible for the
identification, modification, creation, and removal
of monitor rules

 Path Identifier: retrieves the parts in the
specification that are related to the context type

 Rule Verifier: verifies if an existing rule in the
repository is still a valid rule for a service-based
system

 Monitor: uses rules to verify the service-based
system

Requirements/Constraints Patterns and Rules are expressed in Event Calculus
Service based system specifications are expressed in
BPEL

Refined SBA life-cycle

Life-cycle activities Requirements Engineering: Context types
definition

 Construction: definition of patterns, path
identifier mechanism, and rule adaptation and
verification mechanisms.

 Deployment: identification of the path in the
BPEL specification of the service-based system

Open problems and possible extensions

Open problems and extensions Extension of the set of patterns, this can also
include the automatic generation of patterns

 Integration of monitor component(s)

 Acquisition of user context

Extended abstract

This paper presents and approach for monitor adaptation, more specifically, the identification,
modification, creation, and removal of monitor rules. It has been observed that in service-based system
monitoring approaches dealing with rules, or properties, for verifying the correct behaviour of the
system, assume monitor rules to be known in advance and previously defined.

Due to the dynamic nature of service-based systems, different types of user interaction, and different
types of user context involved in the execution of a system it is necessary to have ways to dynamically
identify. Modify, create or remove obsolete monitor rules. This work deals with the above problem by
identifying, modifying, creating, and removing monitor rules. Our work relies on a pattern-based
approach. In the work, patterns represent the templates for the monitor rules and are used to match
potentially useful monitor rules from a repository. Initial experimental results show that our monitor
adaptation approach is able to identify, modify, create and remove monitor rules from a repository in
different scenarios, including an empty repository and a repository with several useful and dummy
rules.

5.4.3 A Context-driven Adaptation Process for Service-based
Applications

5

7

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 57

Title A Context-driven Adaptation Process for Service-based Applications

Authors A. Bucchiarone, R.Kazhamiakin, C.Cappiello, E. di Nitto and V.Mazza

Type Methodology

Short Description The work focuses on the role of the context in the adaptation activities. It
proposes a framework to support the design of SBAs that targets the
adaptation requirements raised by context changes.

Adaptation and Monitoring Problem

Contribution to the adaptation problem With respect to the adaptation problem of the scenario
the work focuses on the adaptation in service
composition driven by changes in the context. For
changes in context dimensions, suitable adaptation
strategies are defined.

Contribution to the monitoring problem

Refined Architecture

Architecture elements •Context monitor: Context is modeled and monitored
during the application execution in order to detect
changes in the context that could need application
adaptation.
•Adaptation Reasoner. Context changes are related to
adaptation strategies that could be associated. For a
context change more than one strategy could be
defined: the choice of strategy is led to the adaptation
reasoner.
•Adaptation enactment engine: Once chosen the
strategy the adaptation mechanism should be enacted.

Requirements/Constraints The approach relies on the capability to properly
formalize and model the context for a service based
application.

Refined SBA life-cycle

Life-cycle activities Requirements Engineering: Definition
of the context model for the service based
application.

 Construction: definition of contextual
monitors and adaptation mechanisms.

 Deployment and Provisioning
deployment of contextual monitors and
adaptation mechanisms.

 Operation, Management, and QA:
monitoring of contextual properties.

 Identify adaptation needs: Define
adaptation and monitoring requirements.

 Identify adaptation strategy:
identification of adaptation strategies related
to the context changes.

 Enact adaptation: enacting of the
related adaptation mechanism.

5

8

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 58

Open problems and possible extensions

Open problems and extensions Definition of a context reasoner.
Context modeling.
Relationships among adaptation strategies and
adaptation mechanisms.

Extended abstract

The paper focuses on the role of the context in the adaptation activities for a service based application.
It proposes a framework to support the design of SBAs that targets the adaptation requirements raised
by context changes.

The approach is based on the service life-cycle proposed in S-Cube that emphasizes the relevance of
the context elements in the different facets of adaptation, both during the design phase and at run-time.
The paper considers all the issues related to the design of SBAs able to evolve together with the
requirements and the execution context. In general, context is any information that can be used to
characterize persons, places or objects that are considered relevant to the interaction between a user
and the application The context has been modeled by considering a set of all the dimensions that can
generally influence the system behaviour.
Context for a service based application should take into account dimensions related to the User context
(preferences and settings of the user), the Ambient context (factors related to space and location), the
Business context (business goals of the application), Time context (factors related to the time, season),
service context (factors related to the services composing the application) and finally the
Computational Context (physical devices used to invoke the application).

On the basis of this context model, the proposed approach provides guidelines for the identification of
the relevant context dimensions to monitor (not all the dimensions are meaningful for all the
applications) and for the definition of the adaptation triggers able to link context changes with suitable
adaptation strategies.
In particular the focus of the paper is on how and when the context should be defined, how context
should be exploited and evolved and, finally, what is the impact of the context changes on the
adaptation activities.

The main contribution to the scenario is the capability of the context-driven adaptation process to
capture the key aspects of adaptation and support designers from the requirements elicitation to the
construction of proper adaptation mechanisms.

5.4.4 Modelling and Automated Composition of User-Centric Services

Title Modelling and Automated Composition of User-Centric Services

Authors Raman Kazhamiakin, Massimo Paolucci, Marco Pistore and Heorhi Raik

Type Model, Technique

5

9

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 59

Short Description The work contributes to the problem of context-driven SBA adaptation.

Specifically, it provides an automated support for construction of service

compositions, taking into account the specific user context, such as the

tasks the user does, his preferences and decisions regarding those tasks and

the services to be involved. To accomplish this, the work provides a way to

capture the composition templates, exploited by the user to solve different

tasks, and a technique to automatically instantiate those templates at run

time.

Adaptation and Monitoring Problem

Contribution to the adaptation problem The work contributes to the problem of selecting

proper adaptation strategies in different user contexts:

based on a set of predefined task composition

templates, the approach is able to instantiate on the fly

those templates with concrete services and construct an

executable service composition to perform the SBA

adaptation.

Contribution to the monitoring problem -

Refined Architecture

Architecture elements Pattern instantiation and creation:

based on the specific adaptation need and the

specific current context, the composition

template is instantiated. Specifically, the

automated service composition is created out

of the template and the services associated to

the context.

Requirements/Constraints The approach relies on the ability to monitor and

reason on the user context to drive the adjustment and

instantiation of the templates.

Refined SBA life-cycle

Life-cycle activities Development and Design: definition of

composition templates. Definition of means to

associate and select services for specific

templates in different contexts.

 Identify adaptation strategy:

instantiate composition templates based on

the user context and associated services.

Open problems and possible extensions

Open problems and extensions Support for the user to interactively influence the

adaptation process: to define which services should be

selected and to adjust/modify the templates.

6

0

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 60

Extended abstract

This work addresses the problem of user-centric service composition, that is, how, based on the needs,
preferences and activities of the user, to construct the specific service composition. Such a problem
requires purely run-time realization, as the specific combination of the user tasks, the preferred
services and the services available for the adaptation cannot be anticipated at design time.
Furthermore, the involved services may differ in the protocols and the activities involved, which
requires very flexible approach.

In this work we provide two contributions to address this problem. First, we present a novel model to
capture the composition templates: a high-level characterization of the set of eventual services, their
relations and constraints to be satisfied to solve a specific user task. For example, for the task of
organizing and managing a trip, a template to coordinate the overnight and transport reservations is
associated, where it is defined how the two types of services should be aligned. The template,
therefore, characterizes the service types and their possible evolution, the constraints on the
coordination of the services, and the user involvement in the control over the services.

Second, we propose a technique for automatically creating a concrete composition out of the template
given the user context. Specifically, automated service composition approach is used to generate a
concrete composition for the template and for the services associated to the user context. For example,
in case of business trip of a long distance performed by a specific user that prefers Lufthansa flights
and Accor hotels, the above template is instantiated with the Lufthansa booking, cancellation, and
flight status monitoring service, as well as the services for booking and managing Accor hotels
reservation which correspond to the transportation and overnight service type in the template.
Furthermore, the composition automatically builds the necessary user protocol to control and
coordinate activities: to be aware of events, to provide inputs, and to trigger actions when the user
changes the tasks to do (e.g., wants to cancel the trip).

6

1

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 61

6 Conclusions

To conclude, we here present a summary of the research directions followed by the project members
in order to achieve the research tasks of the work-package.

In this deliverable we have reported on the work by the Network to further develop comprehensive
and integrated SBA adaptation and monitoring framework, focusing on the problem of proactive
adaptation at different layers and in settings. The ability to anticipate the need for adaptation is a key
issue since it enables one to prevent the failures and deviations that are very critical in the open world
of SBAs. Similarly, there is a need to consider the context of the SBA in a holistic manner and to
provide integrated approaches over context-driven SBA monitoring and adaptation. In order to
accomplish this, we introduced three integration scenarios that follow common architecture, but which
address specific problems.

Each integration scenario identified and described in this deliverable focuses on a specific challenge
identified in the workpackage WP-JRA-1.2. In particular, Scenario 1 primarily focuses on the problem
of integrating the adaptation and monitoring aspects across different layers having the quality model
of the SBA as the key driving aspect Scenario 2 addresses the proactive adaptation challenge
providing an approach based on explicit modelling and monitor ing of various assumptions; and
Scenario 3 focuses on context- and HCI-aware SBA monitoring and adaptation.

The scenarios provide a common reference for the adaptation and monitoring problem in hand,
providing a common basis for the different research works developed within the project. For each of
those scenarios we presented the approach used by the scenario to resolve the problem within and
across different functional layers, the refined reference architecture, the description of the specific
activities across the SBA life-cycle. Finally, for each scenario we analyzed the contributions of the
partners onto the scenario defining the role of the approach, the relevant architecture components and
the life-cycle activities. An overview of the partner contributions can be found in Table 1.

An important contribution of the deliverable is the extension of the Integrated Research Framework,
developed in the workpackage IA-3.1, providing the model and instantiation of the cross-cutting
integration of research results. These scenarios contribute to different views of the IRF (namely
architectural and the life-cycle) and to define the common interfaces between different cross-layer
components.

Starting from this common basis the integration scenarios open up the further integration of different
principles, techniques and mechanisms through common interfaces and architecture mechanisms.

We believe that the definition of integration scenarios, allowing a clear definition of the relations and
dependencies between the different monitoring and adaptation approaches, is a key factor for the
identification of the research gaps that should be leading concerns of future deliverables, and thus
plays a fundamental role in construction of a comprehensive, holistic adaptation and monitoring
framework being developed in JRA-1.2.

6

2

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 62

Scen

ario

Title Authors Type Status

Q
u

a
li

ty
-d

r
iv

e
n

 M
u

lt
il

a
y

er
 S

B
A

 M
o

n
it

o
r
in

g
 a

n
d

 A
d
a

p
ta

ti
o

n

A Fuzzy Service Adaptation
based on QoS Satisfaction

B. Pernici and S. H. Siadat Conference
paper

Accepted
CAiSE
2011

Selection of Service Adaptation
Strategies Based on Fuzzy Logic

B. Pernici and S. H. Siadat Conference
paper

Submitted
ICWS
2011

Preventing KPI Violations in
Business Processes based on
Decision Tree Learning and
Proactive Service Substitution

B. Wetzstein, A. Zengin, R.
Kazhamiakin, M. P istore, D.
Karastoyanova, F. Leymann

Conference
paper

Submitted
SCC 2011

LAYSI: A Layered Approach for
SLA-Violation Propagation in
Self-manageable Cloud
Infrastructures

Ivona Brandic, Vincent C.
Emeakaroha, Michael Maurer,
Sandor Acs, Attila Kertesz,
Gabor Kecskemeti, Schahram
Dustdar

Workshop
paper

In Proc.
COMPSA
C 2011

A Soft-Constraint Based
Approach to QoS-Aware Service
Selection

M.A.Zemni, S.Benbernou,
M.Carro

Conference
Paper

In Proc.
ICSOC.
2010,

Model-driven Management of
Services

Luciano Baresi, Mauro
Caporuscio, Carlo Ghezzi, and
Sam Guinea

Conference
Paper

In Proc
ECOWS
2010

A
ss

u
m

p
ti

o
n

-b
a

se
d
 P

ro
a
c
ti

v
e
 M

o
n

it
o

r
in

g
 a

n
d

 A
d
a

p
ta

ti
o

n

Proactive SLA Negotiation for
Service Based Systems

Khaled Mahbub and George
Spanoudakis

Conference
Paper

In Proc.
SERVICE
S 2010

Evolving Services from a
Contractual Perspective

V.Andrikopoulos,
S.Benbernou, M.P.Papazoglou

Conference
Paper

In Proc.
CAiSE
2009

Adaptation of Service-based
Business Processes by Context-
Aware Replanning

Antonio Bucchiarone, Raman
Kazhamiakin, Marco Pistore
and Heorhi Raik

Conference
Paper

Submitted
ICWS
2011

Towards Proactive Adaptation:
A Journey along the S-Cube
Service Life-Cycle

Andreas Metzger, Eric
Schmieders, Cinzia Cappiello,
Elisabetta Di Nitto, Raman
Kazhamiakin, Barbara Pernici
and Marco Pistore

Workshop
Paper

In Proc.
MESOA
2010

6

3

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 63

C
o

n
te

x
t-

b
a

se
d

A

d
a

p
ta

ti
o

n

a
n
d

M
o

n
it

o
r
in

g

A Pattern-based Approach for
Monitor Adaptation

R. Contreras, A. Zisman Conference
Paper

In Proc.
ICSTE
2010

Identifying, Modifying, Creating
and Removing Monitor Rules
for Service Oriented Computing

R. Contreras, A. Zisman Workshop
paper

In Proc. .
PESOS
2010

A Context-driven Adaptation
Process for Service-based
Applications

A. Bucchiarone,
R.Kazhamiakin, C.Cappiello,
E. di Nitto and V.Mazza

Workshop
paper

Accepter. .
PESOS
2011

Modelling and Automated

Composition of User-Centric

Services

Raman Kazhamiakin, Massimo

Paolucci, Marco Pistore and

Heorhi Raik

Book
Chapter

OTM 2010

Table 1

6

4

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 64

7 References

[1] Julia Hielscher, Andreas Metzger, and Raman Kazhamiakin, ed itors. Taxonomy of Adaptation Princip les

and Mechanisms. S-Cube project deliverable, March 2009. S-Cube project deliverable: CD-JRA-1.2.2.

http://www.s-cube-network.eu/achievements-results/s-cube-deliverables.

[2] Elisabetta di Nitto, editor. State of the art report on software engineering design knowledge and Survey of

HCI and contextual Knowledge, July 2008. S-Cube project deliverable: PO-JRA-1.1.1. http://www.s-

cube-network.eu/achievements-results/s-cube-deliverables.

[3] Raman Kazhamiakin, editor. Baseline of Adaptation and Monitoring Princip les, Techniques, and

Methodologies across Functional SBA Layers. S-Cube project deliverable, July 2009. S-Cube project

deliverable:PO-JRA-1.2.3. http://www.s-cube-network.eu/achievements-results/s-cube-deliverables.

[4] Raman Kazhamiakin, Marco Pistore and Asli Zengin. Cross -layer Adaptation and Monitoring of Service-

Based Applications, In Proc. Of 2nd Intl. workshop on Monitoring, Adaptation and Beyond (MONA+),

Collocated with ICSOC/ServiceWave’09, 2009.

[5] Andreas Gehlert, Marco Pistore, Pierluigi Plebani, Loredana Versienti, editors. First Version of

Integration Framework, December 2009. S-Cube project deliverable: CD-IA-3.1.3. http://www.s-cube-

network.eu/achievements-results/s-cube-deliverables.

[6] Andreas Gehlert and Andreas Metzger, editors. Quality Reference Model for SBA, March 2008. S -Cube

project deliverab le: CD-JRA-1.3.2. http://www.s-cube-network.eu/achievements-results/s-cube-

deliverables.

[7] R. Kazhamiakin, B. Wetzstein, D. Karastoyanova, M. Pistore, and F. Leymann. Adaptation of service -

based applications based on process quality factor analysis. In Proc. Of 2nd Intl. workshop on

Monitoring, Adaptation and Beyond (MONA+), Collocated with ICSOC/Serv iceWave’09, 2009.

[8] Branimir Wetzstein, Asli Zengin, Raman Kazhamiakin, Marco Pistore, Dimka Karastoyanova,

“Preventing KPI Vio lations in Business Processes based on Decision Tree Learning and Proactive

Service Substitution”, SCC 2011 (under submission).

[9] Barbara Pernici and S. Hossein Siadat, “A Fuzzy Service Adaptation for Service Based Applicatio ns”,

CAiSE 2011.

[10] Luciano Baresi, Sam Guinea, and Liliana Pasquale. Integrated and composable supervision of BPEL

processes. In Athman Bouguettaya, Ingolf Kruger, and Tiziana Margaria, ed itors, ICSOC, volume 5364

of Lecture Notes in Computer Science, pages 614–619, 2008.

[11] OASIS Standard: Web services business process execution language (BPEL) version 2.0, 11 April 2007.

[12] Oriol, Marco, Franch, Ameller. Monitoring Adaptable SOA-Systems using SALMon. In Proc. Of 1st Intl.

workshop on Monitoring, Adaptation and Beyond (MONA+), Collocated with ServiceWave’08, 2008.

[13] Luciano Baresi, Sam Guinea, Michele Trainotti, and Marco Pistore. Dynamo + ASTRO: An integrated

approach for BPEL monitoring. In ICWS’09, 2009.

[14] Andreas Metzger, Eric Schmieders, Cinzia Cappiello, Elisabetta Di Nitto, Raman Kazhamiakin, Barbara

Pernici and Marco Pistore, Towards Proactive Adaptation: A Journey along the S-Cube Serv ice Life -

Cycle, Workshop paper MESOA 2010.

[15] Vasilios Andrikopoulos, Salima Benbernou, and Mike P. Papazoglou, “Evolving Services from a

Contractual Perspective”, CAiSE 2009.

[16] Antonio Bucchiarone, Raman Kazhamiakin, Marco Pistore, and Heorhi Raik, “Context -driven adaptation

of Serv ice–Based Business Processes”, ICWS 2011 (under submission)

[17] Gehlert et al. Exploiting Assumption-Based Verification for the Adaptation of Service-Based

Applications. SOAP@SAC 2010.

[18] Khaled Mahbub and George Spanoudakis, "Proactive SLA Negotiation for Service Based Systems“.

SERVICES 2010.

[19] Khaled Mahbub and George Spanoudakis, "A Framework for Proactive SLA Negotiation", 5th

International Conference on Software and Data Technologies (ICSOFT 2010), 22 - 24 Ju ly, Athens,

Greece

[20] Luciano Baresi, Mauro Caporuscio, Carlo Ghezzi, and Sam Guinea, “Model-driven Management of

Services”, In Proc. ECOWS’10, 2010.

[21] Mohamed Anis Zemni, Salima Benbernou, and Manuel Carro, “A Soft-Constraint Based Approach to

QoS-Aware Service Select ion”, In Proc. ICSOC’10, 2010.

http://www.s-cube-network.eu/achievements-results/s-cube-deliverables
http://www.s-cube-network.eu/achievements-results/s-cube-deliverables
http://www.s-cube-network.eu/achievements-results/s-cube-deliverables
http://www.s-cube-network.eu/achievements-results/s-cube-deliverables
http://www.s-cube-network.eu/achievements-results/s-cube-deliverables
http://www.s-cube-network.eu/achievements-results/s-cube-deliverables
http://www.s-cube-network.eu/achievements-results/s-cube-deliverables
http://www.s-cube-network.eu/achievements-results/s-cube-deliverables
http://www.springerlink.com/content/?Author=Mohamed+Anis+Zemni
http://www.springerlink.com/content/?Author=Salima+Benbernou
http://www.springerlink.com/content/?Author=Manuel+Carro

6

5

S-CUBE CD-JRA-1.2.5
Software Serv ices and Systems Network

External Final Version 1.0, Dated March 16, 2011 Page 65

[22] M.L. Massie, B.N. Chun and D.E. Culler, The ganglia d istributed monitoring system: design,

implementation, and experience, Parallel Computing 30 (Ju ly) (2004), pp. 817–840

[23] NESSI Roadmap Series Document: NESSI Strategic Research Agenda. NESSI Research Priorit ies for

FP7, May 2009, SRA Vol.3.2, Revision 2.0, 10 May, 2009.

[24] A. Bucchiarone, R. Kazhamiakin, C. Cappiello, E. d i Nitto and V. Mazza “A Context-driven Adaptation

Process for Service-based Applications”, in Proc. PESOS workshop, 2010.

[25] R. Contreras and A. Zisman, “A Pattern-based Approach for Monitor Adaptation”. In Proc. ICSTE 2010.

[26] R. Contreras and A. Zisman, “ Identify ing, Modifying, Creating, and Removing Monitor Rules for

Service Oriented Computing”, Accepted in Workshop PESOS 2011

[27] J. Ejarque, A. Micsik, R. Sirvent, P. Pallinger, L. Kovacs, R. M. Badia. Semantic Resource Allocation

with Historical Data Based Predictions. The First International Conference on Cloud Compu ting, GRIDs,

and Virtualization, CLOUD COMPUTING 2010, November 21-26, 2010 - Lisbon, Portugal

[28] D. Ameller, X. Franch. Serv ice Level Agreement Monitor (SALMon), in 7th International Conference on

Composition-Based Software Systems, Madrid, 2008. ICCBSS 2008.

[29] Waikato Environment for Knowledge Analysis, WEKA, http://www.cs.waikato.ac.nz/ml/weka/

[30] B. Pern ici and S. H. Siadat. “Select ion of Service Adaptation Strategies Based on Fuzzy Logic”,

ICWS2011 (under submission).

[31] Ivona Brandic, Vincent C. Emeakaroha, Michael Maurer, Sandor Acs, Attila Kertesz, Gabor Kecskemeti,

Schahram Dustdar. “LAYSI: A Layered Approach for SLA-Vio lation Propagation in Self-manageable

Cloud Infrastructures”, In Proc. COMPSAC 2011.

[32] Raman Kazhamiakin, Massimo Paolucci, Marco Pistore and Heorhi Raik “Modelling and Automated

Composition of User-Centric Services”. OTM 2010.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4464028&tag=1
http://www.cs.waikato.ac.nz/ml/weka/

