

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.4

ActiveBPEL
Engine

ActiveBPEL
Engine

BPEL
Engine

Recovery Farm

Monitoring
Farm

Event
Controller

Data
Manager

Data
Repository

Supervision Manager

Run time
Architecture

Management
Level

1
2.1

3.1

3.2

2.2

4.1

4.2 (a)

4.2 (b)4.2 (c)

Figure 2.4: The Unified Framework.

check.
The numbered arrows of Figure 2.4 explain how the framework works. Before starting the execution

of any process, the Supervision Manager configures the different components to allow them to correctly
perform supervision tasks. After this, every time an executing process terminates an activity, the AOP
probes collect internal data and give them to the Event Controller (transition 1), which inserts them
in its embedded working memory. The data available in the working memory of the Event Controller
can always activate suitable rules to require the Data Manager to retrieve external or historical data
(transition 2.1) and store them in its working memory (transition 2.2).

Contributions to Cross-layer Adaptation and Monitoring

This paper proposes a framework to integrate different monitoring and recovery approaches through a
shared space and user-defined rules. Even if the experiments were conducted on a well-defined set of
approaches, the framework is able to accommodate many more approaches both for monitoring and
adaptation. This means that they can easily work at different levels, and the integration among layers
can be obtained through the shared space and rules. Again, the idea here is not to force the designer
to adopt, or implicitly use, any predefined cross-layer monitoring and adaptation solution, but the aim
is to provide suitable and trustable means to let the user integrate the elements s/he wants to use to
supervise the execution of designed systems. This solution is extremely important for two reasons.
Firstly, there is no solution that is able to cover all possible aspects, and thus any particular solution
would force the designer to adopt a “partial” solution. Secondly, different processes, and even different
instances of the same process, may need different supervision frameworks and strategies, and thus a
single framework/solution would not be enough.

External Final Version 1.0, Dated December 14, 2009 29

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.4

2.2.7 Autonomic Resource Virtualization in Cloud-like Environments
Title Autonomic Resource Virtualization in Cloud-like Environments ([18])
Authors Attila Kertesz, Gabor Kecskemeti and Ivona Brandic

Short description

We describe an autonomic architecture for SLA-based resource virtualization
that incorporates enhancements of a meta-negotiation component for generic
SLA management, a meta-brokering component for diverse broker management
and an automatic service deployment for resource virtualization on the Cloud.
We discuss how the principles of autonomic computing can be incorporated to
the service infrastructure layer.

Target cross-layer mechanisms

Integrated monitoring
mechanisms –

Integrated and coordi-
nated adaptation mecha-
nisms

The negotiated service level agreements control the adaptation and autonomic
behaviour of the service selection, brokering, and deployment functions of the
infrastructure.

Means to identify adapta-
tion needs across layers

The use of stricter service level agreements towards the lower levels of the SBAs
enables re-negotiation actions on the higher levels as a response to lower level
violations or predicted violations.

Means to identify adapta-
tion strategies across lay-
ers

–

Cross-layer model

Aspect Service Level Agreements

Component Monitoring (tracking brokers, service instances), Adaptation (autonomous ac-
tions)

Key model elements –

Possible extensions

Cross-layer mechanisms Possible SLA violations can be propagated upwards to SC layer.

Cross-layer model More detailed SLA model that can be useful for adapting the different compo-
nents.

Layer elements –

Covered elements at functional layer

Monitoring Events Adaptation Actions
Business Process Man-
agement – –

Service Composition – –

Service Infrastructure tracking brokers, service instances
bootstrapping different negotiation
strategy, re-evaluating broker ranking,
deploying new service instances

Extended abstract

Grid Computing has succeeded in establishing production Grids serving various user communities all
around the world. Cloud Computing is a novel infrastructure that focuses on commercial resource provi-
sion and virtualization. Both Grids and Service Based Applications (SBAs) already provide solutions for
executing complex user tasks, but they are still lacking non-functional guarantees. The newly emerging
demands of users and researchers call for expanding service models with business-oriented utilization
(agreement handling) and support for human-provided and computation-intensive services. Providing
guarantees in the form of Service Level Agreements (SLAs) are highly studied in Grid Computing.
Nevertheless in Clouds, infrastructures are also represented as a service that are not only used but also

External Final Version 1.0, Dated December 14, 2009 30

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.4

installed, deployed or replicated with the help of virtualization. These services can appear in complex
business processes, which further complicates the fulfillment of SLAs in Clouds. For example, due to
changing components, workload and external conditions, hardware and software failures, already estab-
lished SLAs may be violated. Frequent user interactions with the system during SLA negotiation and
service executions (which are usually necessary in case of failures), might turn out to be an obstacle
for the success of Cloud Computing. Thus, the development of the appropriate strategies for autonomic
SLA attainment represents an emerging research issue. Autonomic Computing is one of the candidate
technologies for the implementation of SLA attainment strategies. Autonomic systems require high-level
guidance from humans and decide, which steps need to be done to keep the system stable. Such systems
constantly adapt themselves to changing environmental conditions.

Autonomic systems ([17]) require high-level guidance from humans and decide, which steps need
to be done to keep the system stable. Such systems constantly adapt themselves to changing environ-
mental conditions. Similar to biological systems (e.g. human body) autonomic systems maintain their
state and adjust operations considering changing components, workload, external conditions, hardware,
and software failures. Usually, autonomic systems comprise one or more managed elements e.g. QoS
elements.

An important characteristic of an autonomic system is an intelligent closed loop of control. Typically
control loops are implemented as MAPE (monitoring, analysis, planning, and execution) functions. The
monitor collects state information and prepares it for the analysis. If deviations to the desired state
are discovered during the analysis, the planner elaborates plans to alter the system, then these plans are
passed to the executor for the enactment of the planned changes. As a result the autonomic system should
turn to healthy state again. In case of an autonomous service based application the control loop could
enable the co-operation of the layers during the analysis (when the overall state of the SBA could be taken
into consideration if necessary) and the planner phases (multi layer action plans could be considered).
As an opposite the monitoring and execution phases are local to a given layer of the SBA.

Autonomously managed SLA-based resource virtualization (SRV) approach. In our previous work
[19] we presented a unified service architecture (SRV) that builds on three main components: agreement
negotiation, brokering and service deployment using virtualization (based on grids, service based systems
or cloud infrastructures). We suppose that service providers and service consumers meet on demand and
usually do not know about the negotiation protocols, document languages or required infrastructure of
the potential partners. The general architecture is highlighted in Figure 2.5.

The relevant actors of this architecture are: (1) The meta-negotiator is a component that manages
Service-level agreements. It mediates between the user and the Meta-Broker, selects appropriate proto-
cols for agreements; negotiates SLA creation, handles fulfillment and violation. (2) The meta-broker’s
role is to select a service broker that is capable of executing a service with the specified user require-
ments, and propagate negotiation processes to brokers (by acting as a negotiator). (3) When service
brokers receive service requests that could not be met without breaking the negotiated agreements, they
use the automatic service deployment service that installs a service instance on demand with the help of
virtualization and infrastructure as a service cloud computing. Finally (4) is the service that users want
to utilize.

In [18] we focus on illustrating how autonomic computing can be applied in the SRV components
of the architecture. Figure 2.5 shows the autonomic management interfaces and connections of the
components. These management interfaces are used when the MAPE control loop is applied in the
autonomic SRV system. With the meta-negotiation component we also present how the propagation
of sensed changes could reach the target component with the help of a software actuator (called the
VieSLAF framework).

We acquire the MAPE requirements and actions of the SRV architecture through several simple
case studies presenting typical fault situations: (1) Negotiation bootstrapping, (2) service mediation,

External Final Version 1.0, Dated December 14, 2009 31

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.4

Meta
negotiatior

(MN)
Meta broker

(MB)
Automatic

Service
Deployer (ASD)

Autonomic
Service

Instance (S)

Autonomic
Manager (AM)

Sensor

Job Management
Negotiation

Self
Management

Sensor

Sensor

Actuator:
VieSLAF

framework

Figure 2.5: Autonomic components in SRV.

Component Monitoring Analysis Planning Execution

Meta-
Negotiation

All candidate ser-
vices are selected,
where negotiation
is possible or
bootstrapping is
required.

The existing
knowledge base is
queried and poten-
tial bootstrapping
strategies are
found (e.g. in
order to boot-
strap between
WSLA and WS-
Agreement).

In case of missing
bootstrapping
strategies users
can define new
strategies in a
semi-automatic
way.

Finally, utilizing
the appropriate
bootstrapping
strategies starts the
negotiation during
the execution
phase.

Meta-
Brokering

The state infor-
mation of all
the intercon-
nected brokers are
tracked. We also
keep track the past
performances of
the brokers based
on feedback.

Query of the var-
ious broker avail-
abilities and per-
formance results.

In case of in-
coming service
request the ranking
brokers are deter-
mined based on
the performance
data. In case of
a broker failure
negative feedback
is provided.

The broker with
the highest rank is
selected for service
invocation.

Service De-
ployment

Tracking whether
a service instance
is healthy, defunct
(cannot serve fur-
ther requests) or
overloaded.

Overloaded service
instances require
either a stronger
virtual machine
or load balancing.
Defunct service
instances just need
a new host.

A deployment
workflow is gen-
erated that could
include state trans-
fer, notification
to brokers, proxy
placement in case
of decommission.

Deployment work-
flow executed. If
a proxy is placed
then it forwards re-
quests to the newly
deployed service.

Table 2.2: Summary of autonomic behaviour

(3) broker failures, (4) service-instance initiated deployment. In the paper we describe the adaptation
strategies on each fault situation. These strategies are built upon adaptation actions that are separately
developed for each component of the SRV architecture. These actions are executed when the architecture
tries to avoid breaking the SLA requirements agreed with the upper layers (SCC, BPM) of the service-
based application. The resulting MAPE control loop of the architecture is summarized in Table 2.2.

External Final Version 1.0, Dated December 14, 2009 32

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.4

Contribution to Cross-Layer Adaptation and Monitoring

This work presents the autonomous behavior of the service infrastructure layer. This behavior is based
on the negotiated SLA requirements with the other layers of the SBA. Therefore this paper contributes
to the cross-layer adaptation and monitoring techniques by introducing the basic interface for altering
the service infrastructure’s behavior. This is a two way interface that is used first to mediate SLA re-
quirements of the service composition and business process management layers, then second it is also
used by the service infrastructure layer to present possible agreement violations in order to initiate SLA
renegotiation. Finally this paper proposes several adaptation actions that can be used by the upper layers
of the SBA to meet higher level goals than the autonomous behavior of the infrastructure level could
achieve.

2.2.8 A Non-functional SLA for Cross-layer Monitoring

Title A View-Based Monitoring For Privacy-Aware Web Services ([12])
Authors H. Meziane, S. Benbernou, A. K. Zerdali, M. S. Hacid, M. Papazoglou
Short description This paper addresses the problem of cross layer monitoring of private data in

service-based applications, ensuring end-to-end quality of service (QoS) capa-
bilities. The proposed approach is processed towards monitoring the conformity
of the privacy agreement stated at the business level that spells out a consumer’s
privacy rights and how the service provider must handle consumers private in-
formation. At the infrastructure level, a Private Data Use Flow (PDUF) model
is developed to handle the vulnerabilities. The process is playing a similar role
to that of database view in database that provides an abstract representation of
a relevant activity. The views can be defined at various abstraction levels to
support the activity of the service.

Target cross-layer mechanisms

Integrated monitoring
mechanisms

Specification of the non-functional QoS e.g., privacy rules as an SLA at business
and infrastructure level (defined as views). The compliance of the privacy rules
is checked at the business and the service levels.

Integrated and coordi-
nated adaptation mecha-
nisms

–

Means to identify adapta-
tion needs across layers

By means the views, the monitor detects the threats and the violations of privacy
rules specified in SLA across the layers of SBA, identifying the breaking service.

Means to identify adapta-
tion strategies across lay-
ers

–

Cross-layer model

Aspect non-functional characteristics of QoS of service based applications.
Component Service based system, monitor, database of threats and vulnerabilities.
Key model elements XML-based language to specify the non-functional QoS as SLA and SQL-like

language for querying the system.

Possible extensions

Cross-layer mechanisms Automatic Adaptation mechanism at composition and infrastructure levels
Cross-layer model Adaptation strategies across layers.
Layer elements –

External Final Version 1.0, Dated December 14, 2009 33

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.4

Covered elements at functional layer

Monitoring Events Adaptation Actions
Business Process Man-
agement

non functional business rules –

Service Composition – –
Service Infrastructure Vulnerabilities, the evolution of the

SLA
–

Extended abstract

The huge recent increase in web-based applications carried out on the Internet has accompanied by an
exponential amount of data exchanged by the interacting entities through web-services and the growth
of consumer awareness of their lack of privacy. Most of the time, web-based service providers require
some personal information or financial information from their consumers. Such information may be
used for a number of objectives; ranging from regulation access to their online services (authentication,
authorization) to billing (accounting), to service maintenance and so on. As the number of inappropriate
usage and leakage of personal data is increasing, privacy concerns is becoming one of most important
concerns of service requesters, service providers and legislators.

In the beginning, the interest of researchers and practitioners has converged on the functional aspects
of those software services and their description. Because of the increasing agreement on the implemen-
tation and management of the functional aspects of those services, the interest of researchers is shifting
toward the ’non-functional’ or quality aspects of web-enabled services including security, privacy, avail-
ability, accessibility, etc. Most of these services require the consumer’s personal information in one form
or another, which makes the service provider in the possession of a large amount of consumer private in-
formation along with the accompanying concerns over potential loss of consumer privacy. In fact, as the
amount of exchanged information exponentially grows, the number of inappropriate usage and leakage
of personal data is increasing, privacy has emerged and is becoming one of the most important and the
most crucial concerns and challenging issues. It is today one of the major concerns of users exchanging
information through the web, including service requesters, service providers and legislators. Everyone
who has purchased anything from the Internet had led the experience of pausing and wondering if is
”safe” to enter one’s credit card information. Clearly, the more one is exposed to new services on the
Internet and the varied personal information that is demanded, by theses services, the more one wonders
whether the personal information that ones enters would be kept safe. The search problem faced by
Internet users today is not the lack of information from searches, but the challenge is how the web-based
applications are more trustworthy to control the private data usage to keep more confidentiality. Such a
need, leads to built and manage service-based systems that provide desired end-to-end QoS awareness.
Traditionally, access control to any kind of data (e.g. private) has dealt only with authorization decisions
on a subject’s access to target resources. Obligations are requirements that have to be fulfilled by the
subject for allowing access. Conditions are subjects and object-independent environmental requirements
that have to be satisfied for access. In today’s highly dynamic, distributed environment, obligations and
conditions are also crucial decision factors for richer and finer controls on usage of data resources. More
precisely, the challenge of private data management is how to do usage control, knowing that the private
data is already used. In fact, while access control aspect of security and privacy is well understood, it
is unclear of how to do usage control. The need is to assess the health of systems cross the layers. We
investigated the self-protecting service management. We are sensitive to build system that anticipates,
detects hostile activities dealing with the private data, identifies, and protects against threats from busi-
ness level to infrastructure layer.
In response to the privacy concerns quoted above, in [4, 5] we proposed a privacy agreement model at
the business level that spells out a set of requirements related to consumer’s privacy rights in terms of
how service provider must handle privacy information. The properties and private requirements can be

External Final Version 1.0, Dated December 14, 2009 34

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.4

checked at a design time prior to execution, however, the monitoring cross layers of the requirements
at run-time has strong motivations since those properties can be violated at run time. Thus, checking at
run-time the compliance of the requirements defined in the privacy agreement is a challenging issue, see
Figure 2.6 for the proposed architecture.

Privacy
A

Collector Execution
Business
processAgreement

term

Requirement Extractor
Log

database

Graphical Inteface Execution
Operations
Process

P i t d t

process
layer

equ e e t t acto

Monitoring private units

Monotoring process
Privacy –events

view

sp
Private data

Data- Data-
Right Ref

Data- Data-
Obligation Ref

o oto g p ocess

Query
Process

Model
Checker

usage flow view
visualizationViolation

Events
Infrastructure

layer
Usage

flow views

Private Data database
Report

Figure 2.6: The cross-layer architecture of Private SLA

That issue must be properly addressed otherwise it could lead to agreement breaches and to lower
service quality. Indeed, the private data use flow must be observed which means monitoring the behavior
of the privacy agreement. From the results of the observations, analysis can be done to come up to an
understanding, why the non-compliance took place and what remedy will be provided enhancing the
privacy agreement.
The common approach developed to support requirements monitoring at run-time assumes that the sys-
tem must identify the set of the requirements to be monitored. In fact, as part of the privacy agreement
model, the set of privacy requirements to be monitored are needed from which monitoring private units
are extracted and their occurrences at run-time would imply the violation of the requirements. Besides the
functional properties (e.g. operations of the service), the time-related aspects are relevant in the setting
of the privacy agreement. In addition, the non-compliance or failing to uphold the privacy requirements
are manifested in terms of vulnerabilities must be identified. The approach features a model based on
state machine that is supported by abstractions and artifacts allowing the run-time management. It’s a
four-phases approach:

• Identifying the user and provider needs at business level in order to protect the personal informa-
tion.

• Formalizing the needs as a contract. The privacy policy and data subject preferences are defined to-
gether as one element called Privacy-agreement an extension of WS-Agreement, which represents
a contract between two parties, the service customer and the service provider within a validity. We
provide abstractions defining the expressiveness required for the privacy model, such as rights and
obligations. The defined contract is considered as the output of the business layer.

• Providing a formal model for monitoring and controlling the privacy agreement. For that purpose,
we introduce the private data use flow (PDUF) mechanism. We propose to express the PDUF as
a state machine because of its formal semantics, well suited to describe the activation of different
clauses of the privacy agreement. It is an effective way to identify the privacy vulnerabilities,

External Final Version 1.0, Dated December 14, 2009 35

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.4

where service compliance to the privacy regulations may be compromised. The semantic of the
state machine is to define all the triggered operations involving a private data from the activation
of the agreement (initial state) to the end of the agreement (final state). In Figure2.6 is presented
the current cross-layer architecture for Private SLA monitoring.

• Querying the private usage flow. We introduce the notion of the usage flow view while composing
service (at the SCC layer). The usage flow view (playing the same role to that of database view
in databases) provides views from the abstract PDUF (from business level) corresponding to the
triggering clauses of the privacy agreement ”output of business layer”. In Figure 2.7 is depicted
the cross-layers mapping.

Figure 2.7: PDUF: The global usage flow views

Contributions to Cross-layer Adaptation and Monitoring

As stated in our previous deliverable PO-JRA-1.2.3, the part of the deliverable (at the end of the report is
a paper to appear at 26th IEEE International Conference on Data Engineering, ICDE’ 2010 conference)
[12] aims at proposing a framework for contract-based monitoring with respect the non functional QoS
of the customer’s goal i.e. privacy. We discuss the concept of ”privacy agreement” as a possible approach
for monitoring SLA cross-layers in SBA. The monitor component (see Figure 2.6) supports cross layers
monitoring to capture the threats and vulnerabilities at the infrastructure level for the services involved
in the SBA. Moreover, it also supports monitoring the privacy in the contract at the behavioral level in
the SBA.

External Final Version 1.0, Dated December 14, 2009 36

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.4

2.3 Summary and analysis

In this chapter, we presented the initial integration approaches for cross-layer adaptation and monitoring.
We have shown the diverse ways the problems during integration could be handled. In this section we
aim to identify the well-investigated directions and the gaps of our current research based on the paper
summary sections presented before.

Summarized research papers
⇓ Research areas ⇓ [23] [20] [15] [9] [1] [2] [18] [12]

Integrated monitoring mecha-
nisms

- + + + + + - +

Integrated and coordinated
adaptation mechanisms

- - - - + + + -

Means to identify adaptation
needs across layers

+ + + + + + + +

Means to identify adaptation
strategies across layers

+ - + + - + - -

BPM Monitoring events + + + - generic generic - +
SCC Monitoring events + - + + generic generic - -
SI Monitoring events + + + - generic generic + +
BPM Adaptation Actions generic - generic - generic generic - -
SCC Adaptation Actions generic - generic + generic generic - -
SI Adaptation Actions generic - generic - generic generic + -

Table 2.3: Summary of research achievements towards the integration of cross-layer adaptation and
monitoring principles, techniques and methodologies

Analysis and comparison is based on the findings presented in Table 2.3. First of all we analyze the
research results from the perspective of “Target cross layer mechanisms”. The most targeted topic is
the identification of adaptation needs across layers. All research papers present ideas on this topic here
we include the examples of specification on the partial replacement of the service based system and the
user specified probes triggering the execution of adaptation strategies. From the summary tables of each
previous section we also identified that the issue of integrated adaptation and coordination mechanisms
is barely targeted, and it should be later discussed in the coming deliverables of the work-package.

If we consider our research from the point of “covered elements at the functional layer”, then it can
be seen that the integration in the most cases is supported by the service infrastructure layer (one notable
exception is [9]). First this is simply the result of the availability of the most fine grained information
for monitoring in the SBA, that results (a) the use of infrastructure layer monitoring systems to collect
information for the higher layers, or (b) the higher layers aggregate the monitored values collected by
the infrastructure layer. Second most adaptation strategies also require the support of the infrastructure
layer at least when they involve changes in the infrastructure.

The topic of “integrated and coordinated adaptation mechanisms” is less covered in this current
deliverable; we have focused on mainly the integration of monitoring systems on the different layers of
the SBA. This is done purposefully here because integrated adaptation requires the global view of the
SBA for informed decision-making. This global view however can hardly be provided by a fragmented
monitoring system; therefore we have provided six research papers ([1,2,12,15,20,23]) that are focusing
on building the baseline for the integration of adaptation by investigating integration possibilities among
the monitoring systems of the different layers. Adaptation is not neglected usually (except two articles
[12, 20]), however currently our research is still focused on the generic concepts behind the integration
of adaptation systems between layers (e.g. providing languages to express adaptation strategies or using

External Final Version 1.0, Dated December 14, 2009 37

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.4

use case scenarios that provide layer independent requirements for adaptation). As it can be seen from
this and the previous deliverable we already have support for (i) identification of adaptation needs, (ii)
identification of adaptation strategies, and (iii) several adaptation mechanisms. Therefore in the next
deliverable we will aim to integrate concrete adaptation actions with the already available tools to provide
the missing elements from these generic adaptation systems.

External Final Version 1.0, Dated December 14, 2009 38

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.4

Chapter 3

Outlook and conclusions

This chapter aims to summarize the research directions followed by the project members in order to
achieve the research tasks of the work-package. In this current deliverable we have presented the ways
of consolidating our joint research in order to achieve the initial cross-layer integration of the adaptation
and monitoring principles, techniques and methodologies. This work has been presented through several
joint research papers. In section 2.1 we have defined a comprehensible methodology in order to present
the coherency of the research direction of these co-authored articles. However, this methodology was
also the key factor for the identification of the research gaps that should be leading concerns of future
deliverables. The identified problems are highlighted in the following paragraphs.

Towards comprehensive integrated adaptation and monitoring principles

First in section 2.2.1 and 2.2.2 we have started with the investigation of replacing service instances
in compositions that can be supported by runtime service discovery. As a result we have identified
adaptation requirements of the service composition layer that can be propagated towards the service
infrastructure layer. These requirements allow research on the adaptation actions to be performed in
the service infrastructure layer. The resulting actions of this research will form the base to define the
adaptation strategies applied after service discovery identifies possible replacements of a service instance.
Extending the service replacement policies to support both the business process model and the service
composition layer can strengthen the cross-layer behavior of this contribution.

Later on in section 2.2.7 we propose the autonomous behavior of the basic services in the service
infrastructure layer. This behavior is guided by the service level agreements between the composition
and the infrastructure layers. We propose to fire monitoring events for the SCC and BPM layers in case
the infrastructure layer cannot operate autonomously without violating the agreements. Future research
will focus on the issues about firing these monitoring events before actually violating the agreements.
This research will require fine-grained agreement description that allows the cooperation between JRA-
1.2 and JRA-1.3.

As described in section 2.2.8 service level agreements could also include non-functional properties
like privacy requirements. We introduce the monitoring of the violation of these non-functional proper-
ties. In section 2.2.3 we also discuss monitoring of the different SBA layer aspects. These aspects cover
the monitoring of KPIs in business process management layer, PPMs at the service composition and
coordination layer and finally QoS metrics of the service infrastructure layer. Based on these monitoring
results we plan to develop adaptation strategies in order to alter future service compositions and business
processes. These strategies will involve automatic adaptation mechanisms at composition and infrastruc-
ture layers. The adaptation actions involved in the strategies will include ad-hoc process modification,
service-replacement, service re-composition and infrastructure reconfiguration.

Finally in sections 2.2.4, 2.2.5 and 2.2.6 we introduce the BPM aspects of the adaptation and moni-
toring techniques. During design time we define domain assumptions that can be verified and monitored

External Final Version 1.0, Dated December 14, 2009 39

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.4

during the execution of the SBA. Currently we support the monitoring of protocol deviations and tempo-
ral property violations in service compositions. We also present a language that can express the violation
scenarios that could raise monitoring events. Then we present a language to describe adaptation actions.
In our future plans we will target our research towards new types of analysis techniques to identify new
kinds of domain assumptions that monitor the different layers and aspects of the SBA.

Towards integration of predictive monitoring and proactive adaptation models

In this section we shortly discuss the research issues and goals that initiate the work on the deliverable
CD-JRA-1.2.6 titled “Comprehensive, integrated principles, techniques and methodologies for context-
and HCI-aware monitoring of SBAs and for the detection of unexpected situations”.

In current implementations of adaptive service-based applications (SBAs), monitoring events trigger
the adaptation of an application after a change or a deviation has occurred. Yet, such reactive adapta-
tions have several drawbacks (cf. [10]): executing faulty services, increasing execution time due to the
execution of adaptation activities, and late arrival of events that trigger adaptation which would make the
adaptation of the system not possible anymore. Proactive adaptation presents a solution to address these
drawbacks, because ideally the system will detect the need for adaptation and will self-adapt before a
deviation will occur during the actual operation of the SBA and before such a deviation can lead to afore-
mentioned problems. However, proactive adaptation decisions should be taken in an informed way (e.g.,
by building confidence in the predicted future failures), to avoid unnecessary proactive adaptations that
could be costly and/or faulty.

The key factor of proactive adaptation is the prediction of the future quality (and functionality) of
a service-based application. Existing approaches ([6, 8, 21, 22, 28–30]) use data mining techniques to
predict system parameters, faults and QoS attributes. However these approaches are typically dependent
on the availability of historical and training data and, hence, not applicable in the case of frequently
changing and previously unseen services which may invalidate past monitoring data due to those changes.

Furthermore, online testing and regression-testing techniques could be exploited to detect changes
and deviations before they can lead to undesired consequences and thus support proactive adaptation.
Despite the fact that only several authors ([7, 31]) have highlighted the importance of online testing for
SBAs, there have been no concrete techniques to exploit testing results for (self-) adaptation.

Finally, statistical testing ([3, 13, 24, 27, 33]) could be used for determining feasible sub-sets of test
cases while still maintaining adequate test coverage and also to predict the reliability of the system under
test. However, statistical testing requires a very large number of test cases to produce statistically sound
data, therefore it poses a significant burden for its applicability in the SBA context.

External Final Version 1.0, Dated December 14, 2009 40

Bibliography

[1] Luciano Baresi and Sam Guinea. Self-supervising bpel processes. Technical report, Dipartimento
di Elettronica e Informazione, Politecnico di Milano, November 2009.

[2] Luciano Baresi, Sam Guinea, and Liliana Pasquale. Integrated and composable supervision of bpel
processes. In Athman Bouguettaya, Ingolf Krüger, and Tiziana Margaria, editors, ICSOC, volume
5364 of Lecture Notes in Computer Science, pages 614–619, 2008.

[3] T. Bauer, F. Bohr, D. Landmann, T. Beletski, R. Eschbach, and J. Poore. From requirements
to statistical testing of embedded systems. In SEAS ’07: Proceedings of the 4th International
Workshop on Software Engineering for Automotive Systems, Washington, DC, USA, 2007. IEEE
Computer Society.

[4] Salima Benbernou, Hassina Meziane, and Mohand-Said Hacid. Run-time monitoring for privacy-
agreement compliance. In ICSOC, pages 353–364, 2007.

[5] Salima Benbernou, Hassina Meziane, Yin Hua Li, and Mohand-Said Hacid. A privacy agreement
model for web services. In IEEE SCC, pages 196–203, 2007.

[6] S. Casolari, M. Andreolini, and M Colajanni. Runtime prediction models for web-based system
resources. In Proc. IEEE International Symposium on Modeling, Analysis and Simulation of Com-
puters and Telecommunication Systems MASCOTS 2008, pages 1–8, 2008.

[7] P. Deussen, G. Din, and I. Schieferdecker. A ttcn-3 based online test and validation platform for
internet services. In Proceedings of the 6th International Symposium on Autonomous Decentralized
Systems (ISADS), pages 177–184, 2003.

[8] S. Garg, A. van Moorsel, K. Vaidyanathan, and K. Trivedi. A methodology for detection and
estimation of software aging. In Proceedings of the 9th International Symposium on Software
Reliability Engineering, pages 282–292, Paderborn, Germany, November 1998.

[9] A. Gehlert, A. Bucchiarone, R. Kazhamiakin, A. Metzger, M. Pistore, and K. Pohl. Exploiting
assumption-based verification for the adaptation of service-based applications. In Proceedings of
the 25th Annual ACM Symposium on Applied Computing, Track on Service Oriented Architectures
and Programming, Sierre, Switzerland, March 2010.

[10] J. Hielscher, R. Kazhamiakin, A. Metzger, and M. Pistore. A framework for proactive self-
adaptation of service-based applications based on online testing. In Towards a Service-Based In-
ternet. Proceedings ServiceWave 2008 Conference, LNCS. Springer, 2008.

[11] Julia Hielscher, Andreas Metzger, and Raman Kazhamiakin, editors. Taxonomy of Adaptation
Principles and Mechanisms. S-Cube project deliverable, March 2009. S-Cube project deliverable:
CD-JRA-1.2.2. http://www.s-cube-network.eu/achievements-results/s-cube-deliverables.

41

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.4

[12] H.Meziane, S.Benbernou, A.K.Zerdali, M.S.Hacid, and M.Papazoglou. A view-based monitoring
for privacy-aware web services duplicate invoices detection. In to appear in 26th International
Conference on Data Engineering Conference, ICDE, 2010.

[13] C. Kallepalli and J. Tian. Measuring and modeling usage and reliability for statistical web testing.
IEEE Trans. Softw. Eng., 2001.

[14] R. Kazhamiakin, M. Pistore, and Asli Zengin. Cross-layer Adaptation and Monitoring of Service-
Based Applications. In Proc. Of 2nd Intl. workshop on Monitoring, Adaptation and Beyond
(MONA+), Collocated with ICSOC/ServiceWave’09, 2009.

[15] R. Kazhamiakin, B. Wetzstein, D. Karastoyanova, M. Pistore, and F. Leymann. Adaptation of
service-based applications based on process quality factor analysis. In Proc. Of 2nd Intl. workshop
on Monitoring, Adaptation and Beyond (MONA+), Collocated with ICSOC/ServiceWave’09, 2009.

[16] Raman Kazhamiakin. Baseline of Adaptation and Monitoring Principles, Techniques, and Method-
ologies across Functional SBA Layers. S-Cube project deliverable, July 2009. S-Cube project de-
liverable: PO-JRA-1.2.3. http://www.s-cube-network.eu/achievements-results/s-cube-deliverables.

[17] Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing. Computer, 36(1):41–
50, 2003.

[18] Attila Kertesz, Gabor Kecskemeti, and Ivona Brandic. Autonomic resource virtualization in cloud-
like environments. Technical Report TUV-1841-2009-04, Technical University of Vienna Informa-
tion Systems Institute Distributed Systems Group, Argentinierstr. 8/184-1; A-1040 Vienna, Austria,
December 2009.

[19] Attila Kertesz, Gabor Kecskemeti, and Ivona Brandic. An sla-based resource virtualization ap-
proach for on-demand service provision. In Proceedings of 3rd International Workshop on Virtual-
ization Technologies in Distributed Computing. ACM, June 2009.

[20] George Spanoudakis Khaled Mahbub and Andrea Zisman. A monitoring approach for runtime
service discovery. under preparation.

[21] I. Lee. Software Dependability in the Operational Phase. PhD thesis, Department of Electrical and
Computer Engineering, University of Illinois, Urbana–Champaign, IL, 1995.

[22] D. J. Lilja. Measuring computer performance. A practitioner’s guide. Cambridge University Press,
2000.

[23] Khaled Mahbub and Andrea Zisman. Replacement policies for service-based systems. In 2nd
Workshop on Monitoring, Adaptation and Beyond (MONA+), 2009.

[24] J. Poore and C. Trammell. Engineering practices for statistical testing. Crosstalk: The Journal of
Defense Software Engineering, 11:24–28, 1998.

[25] M. Proctor, M. Neale, P. Lin, and M. Frandsen. Drools Documentation. Available on: http://labs.
jboss. com/file-access/default/members/jbossrules/freezone/docs/3.0, 1, 2006.

[26] C Tinelli. A dpll-based calculus for ground satisfiability modulo theories. In Proceedings of JELIA-
02, volume 2424 of LNAI, pages 308–319, 2002.

[27] C. Trammell. Quantifying the reliability of software: statistical testing based on a usage model. In
ISESS ’95: Proceedings of the 2nd IEEE Software Engineering Standards Symposium, Washington,
DC, USA, 1995. IEEE Computer Society.

External Final Version 1.0, Dated December 14, 2009 42

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.4

[28] K. Vaidyanathan and K. S. Trivedi. A measurement-based model for estimation of resource exhaus-
tion in operational software systems. In Proceedings of the Tenth IEEE International Symposium
on Software Reliability Engineering, pages 84 –93, Boca Raton, FL, November 1999.

[29] W.M.P. van der Aalst and M. Pesic. Test and Analysis of Web Services, chapter Specifying and
Monitoring Service Flows: Making Web Services Process-Aware, pages 11–55. Springer, 2007.

[30] R. Vilalta, C.V. Apte, J.L. Hellerstein, S. Ma, and S.M Weiss. Predictive algorithms in the manage-
ment of computer systems. IBM, 2002.

[31] Q. Wang, L. Quan, and F. Ying. Online testing of web-based applications. In Proceedings of the
28th Annual International Computer Software and Applications Conference (COMPSAC), pages
166–169, 2004.

[32] B. Wetzstein, P. Leitner, F. Rosenberg, I. Brandic, S. Dustdar, and F. Leymann. Monitoring and
analyzing influential factors of business process performance. In Proceedings of EDOC 2009,
Auckland, New Zealand, 2009.

[33] J.A. Whittaker and M.G. Thomason. A markov chain model for statistical software testing. IEEE
Trans. Softw. Eng., 20:812–824, 1994.

[34] I.H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques. Morgan
Kaufmann, 2005.

External Final Version 1.0, Dated December 14, 2009 43

