Research Challenges on Online Service Quality Prediction for Proactive Adaptation
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Abstract—Online quality prediction allows service-oriented
systems to anticipate the need for adaptation and thus to pre-
vent the actual occurrence of failures or to mitigate upcoming
failures. Such proactive adaptation capabilities are increasingly
relevant for future service-oriented systems, which need to
cope with limited control over third-party services, as well as
rapidly changing usage contexts. Initial, promising results have
been achieved for what concerns online quality prediction for
service-oriented systems. However, there are many challenging
issues remaining that call for concrete solutions. In this paper
we present a set of research challenges identified by the
research community that may be worth investigating in the
coming years.
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I. INTRODUCTION

Service-orientation is increasingly adopted as a paradigm
for building highly dynamic, distributed service-oriented
systems. A service-oriented system is realized by compos-
ing individual software services. In contrast to a software
component, not only the development, quality assurance,
and maintenance of the software can be under the control
of third-parties, but the software can also be executed and
managed by third-parties [1].

There is a clear trend that in the future, service-oriented
applications will be increasingly composed of third-party
services accessible over the Internet [2]. As a consequence,
the capabilities and quality of service-oriented systems more
and more will depend on the quality of its third-party ser-
vices. Specifically, this means that service-oriented systems
have to become resilient against failures of their third-party
services.

Furnishing service-oriented systems with self-adaptation
capabilities is considered a key solution to address the above
challenge [1], [3], [4]. Online quality prediction, together
with self-adaptation, allows service-oriented systems to an-
ticipate the need for adaptation and thus to prevent the actual
occurrence of failures or to mitigate upcoming failures. Such
a proactive adaptation of service-oriented systems promises
to mitigate some of the key problems faced when resorting
to reactive adaptation only, such as the need for costly repair
or compensation activities (cf. [S]-[7]).

A. Need for Novel Online Quality Prediction Techniques

Dedicated, novel online quality prediction techniques are
increasingly relevant for future service-oriented systems, due
to the following two reasons:

1) Limited Control: The use of third-party services im-
plies that service compositions will be subject to changes
at runtime in their execution environment that are only
under limited control by the service integrator [8], [9].
Examples include service changes, such as new versions of
services that are incompatible with previous versions, the
discontinuation of service offerings by their providers, as
well as fluctuations in service quality, such as performance,
availability and reliability. In most cases those changes and
potential failures cannot be predicted with existing design
time techniques and methods.

2) Limited Visibility: Due to the fact that a significant
part of the software and the infrastructure that realize service
compositions will be owned, hosted and maintained by third
parties, service integrators will only have limited visibility
into the intrinsics of the building blocks of those composi-
tions. In most cases services can only be observed through
the “behavioral” interface that is offered by the service
provider. The architecture, control flow or even code of
third-party services will not be known by service integrators.
Service providers in most cases will not be willing to share
this information [8]. This poses a critical limitation to the
applicability of existing online failure prediction techniques,
which have been proposed for more traditional computer-
based systems (see [10] for a comprehensive survey).

B. State of the Art

The above reasons led researchers to propose online
quality prediction techniques tailored to the realm of service-
oriented systems. Those techniques fall into the following
major classes:

e Data mining approaches, as presented in [11], [12],
leverage machine learning capabilities to train pre-
diction models using historic monitoring data. As an
example, they employ multi-layer artificial neural net-
works [13] for quantitative QoS and decision trees [14]
for qualitative QoS.

o Run-time verification approaches, as introduced in [15],
[16], ascertain whether some predefined properties are
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met at run-time. A typical technique which is used is
run-time model checking.

e Online testing approaches, as advocated in [7], [17],
[18], test the services of the service-oriented system in
parallel to their normal use in order to gather additional
evidence for failures.

e Static analysis approaches, such as the ones introduced
in [19], systematically examine models of service-
oriented systems to infer approximations of their ex-
ecution. They use the service composition structure
of the system as a basis to forecast QoS deviations
by mapping it to a constraint satisfaction problem
(CSP) [20]

o Simulation-based approaches, as presented in [21],
[22], execute dynamic models of the service-oriented
systems to simulate their future behavior. Those ap-
proaches mostly resort to discrete event simulation
tools [23].

Despite such initial progress in the field of online quality
prediction for service-oriented systems, many issues still
remain open and new issues will arise for future service-
oriented systems.

C. Contribution of the Paper

This paper presents and elaborates on important research
challenges for online quality prediction of service-oriented
systems. Those challenges have been identified by 40 experts
during the S-Cube Research Roadmap Workshop [24]. The
overall objective of the workshop was to identify challenges
that may become relevant after and beyond the S-Cube
project (i.e., in 5-10 years) and which have a high potential
for impact.

II. CHALLENGES FOR ONLINE QUALITY PREDICTION

The challenges on online quality prediction are grouped
in to three main clusters and detailed below (also see Fig. 1):

Overview on Research Challenges

(¢) handling heterogeneity during predictions (Section II-A),
(21) assessing the relevance of predictions (Section II-B), and
(2¢7) impact of cloud computing and large event streams on
prediction techniques (Section II-C).

A. Handling Heterogeneity during Predictions

1) Prediction on Different Time-Scales: Adaptability is
recognized as a key feature of service-oriented systems,
where achieving optimal and/or resilient operation requires
to continuously re-structure the system to adapt to changes
in its execution context. These adaptation needs may be
triggered by specific cases to be handled, unexpected situ-
ations depending on environmental conditions, or changing
requirements.

This need for continuous adaptation results in a system
characterized by a huge set of executions that, although
instantiated from the same models (e.g., service composition
specifications such as BPEL or BPMN), strongly differ in
terms of run-time structure. In such a dynamic environment,
the system cannot remain unchanged; the short-term adapta-
tions applied to process and service instances should be used
to derive long-term system changes, i.e., to predict beneficial
evolutions of the system. In fact, providing support for long-
term adaptation is becoming one of the main requirements
for managing the life-cycle of dynamic systems [25]. In
particular, success cases and best practices derived from the
execution and adaptation history should be used as training
cases for evolution mechanisms in order to progressively
improve the system.

Most existing approaches addressing this problem
(e.g., [26], [27]) derive model-level changes by analyzing
frequently occurring changes at the execution-level. In other
words, if a run-time change/adaptation occurs more fre-
quently than a predefined threshold, the change will be
propagated at the model-level. These evolution approaches



present two major drawbacks. First, an execution-level adap-
tation is not good “in general”, it is good for a specific
context/situation, and thus cannot simply be propagated to
the system model without taking into account the adaptation
need it was devised for. Moreover, plugging in adaptation
variants into the original system is not always a good
solution, since it may result in embedding fault-handling
activities rather than trying to address the root cause that
required run-time adaptation. Few approaches have been
proposed in this direction (e.g., [28], [29]), and the results
are still preliminary.

Another key challenge not addressed so far is learning
from the execution and adaptation history to automatically
improve the learning rules/strategies that are used to proac-
tively trigger adaptation and search for run-time adaptation
solutions.

2) Prediction of Heterogeneous Service-oriented Systems:
Made possible through advancements in information and
communication technology, we will see the seamless integra-
tion of virtual services (such as financial and telecommuni-
cation services) with real-world services (such as transporta-
tion or manufacturing). Service-orientation will thus foster
and ease cross-organizational data exchange and integration
of IT systems. This trend will culminate in the Future
Internet, where the Internet of Services (IoS) and the Internet
of Things (IoT) converge.

The Future Internet thus will radically empower stake-
holders and IT systems to access heterogeneous and cross-
organizational services and data. Especially the IoT will
lead to an unprecedented access to more data sources (e.g.,
through the availability of cheap connected sensors) and thus
will foster the seamless and effortless access to operational
data from everywhere at any time.

Such data availability and online access to the data, as
well as novel means to interact with the virtual and real-
world services, will open up opportunities for innovative
ways of monitoring and predicting and therewith controlling,
adapting and managing business processes and business
interactions.

For the vision of the Future Internet to become true, many
challenging research issues need to be addressed. Important
ones include:

« We will see an even stronger decentralization of sys-
tems together with the lack of control of such decen-
tralized entities. This requires novel ways to observe
these systems in order to gain evidence for prediction.

e Due to many different stakeholders and data sources,
there is an increased need to understand the quality of
that data (cf. [30]). Here, issues such as accuracy and
timeliness of data from the IoT, as well as trustworthi-
ness of data providers in the IoS need to be faced. On
the positive side, the huge number of data sources and
data items may allow for data fusion, correlation and
consistency checking and thus improve predictions.

o The challenges towards online quality prediction will
significantly be amplified in the presence of noisy
and uncertain data. This challenge has been initially
addressed by the Complex Event Processing (CEP)
community. Several works dealt with uncertain events,
such as the effect of uncertainty in input events [31].
However, they only consider a reactive analysis of
events. This means we still need to understand what
the impact of uncertainty is on the prediction of future
situations.

o The high dynamics of Future Internet applications re-
quires (near) real-time processing of large data streams
from distributed event sources in order to observe
problems and deviations (e.g., such that adaptations
can be executed). This means that current solutions,
which often work on post-mortem data, need to be
significantly enriched to handle such dynamics in an
online fashion (see Section II-C2).

B. Assessing the Relevance of Predictions

1) Accuracy Assessment of Online Predictions: Ensuring
that online quality prediction is accurate is critical [32].
Otherwise, wrong predictions may lead to the execution
of unnecessary adaptations (in the case of false positive
predictions) or missed adaptation opportunities (in the case
of false negatives). As an example, unnecessary adaptations
may introduce severe problems; e.g., if a working service
wrongly is replaced by one with actual bugs.

Providing accurate quality predictions becomes extremely
challenging in the setting of Future Internet applications,
especially if they consist of third-party IoS and IoT services
and thus exhibit a certain heterogeneity and dynamics (also
see Section II-A2). The observed quality and functionality
of those third-party services can significantly vary between
different service invocations. For instance, the performance
of a third-party service might depend on the load of the
infrastructure at the provider’s side or the network latency if
services are offered over the Internet. As another example, a
failure observed at one point in time (e.g., the unavailability
of a service because of a temporary overload of the comput-
ing infrastructure at the service provider side) can disappear
at a later point in time.

Traditionally, accuracy of predictions is assessed in a
“post-mortem” way such as to select a matching prediction
technique for a specific usage setting [10]. However, in
the Future Internet those usage settings or contexts may
continuously change. This means that even if high accuracy
is achieved in an initial setting, accuracy might quickly
decrease over time. We thus need new ways to assess
the accuracy in an online fashion, such as to determine —
during run-time — whether to trust the predictions and take
respective adaptation actions, or even to dynamically switch
between different prediction techniques.



The literature provides first indications on how such a run-
time assessment of accuracy could be performed. Dinda [33]
proposes computing confidence intervals together with the
point predictions to take an informed decisions about the
deployment of computational tasks for more traditional
computer-based systems. In the setting of service-oriented
systems, there are proposals to compare predictions with the
actual executions during runtime and to use the prediction
errors to trigger the re-training of the prediction model [11].
Other proposals propose computing the statistical confidence
of predictions during run-time [6]. However, those ideas
need to be significantly expanded and refined to become
applicable in the Future Internet setting.

2) Contextualization of Predictions: In practice, many
service-oriented systems will — often depending on their
context — have “soft” quality requirements [3]. As an exam-
ple, a user accessing service offerings through her mobile
phone will most probably not expect broadband connectivity
and thus high performance and responsiveness if traveling
through tunnels or on an airplane.

This means that the decision whether quality requirements
will be violated is not a clear cut one. It may rely on
objective functions; e.g, ones introduced from the point of
view of the service provider [3].

In addition, utility functions that assess the “severity” of
the violation from the point of view of the end-user need
to be taken into account for assessing whether a predicted
quality deviation in fact indicates a critical event. This means
that the notion of Quality of Experience (QoE [34]) needs
to be considered during prediction.

Finally, to take informed adaptation decisions, cost models
become important in order to balance the costs of not taking
an adaptation versus the cost of doing so (cf. [35]). As an
example, the cost of the predicted violation might be smaller
than the penalty to be paid for an SLA violation. Such a
critical event could then be safely ignored. This means that
we need to be able to quantify the risk involved in both of
these options in order to take informed decisions.

C. Impact of Cloud Computing and Large Event Streams on
Prediction Techniques

1) Prediction Considering the Cloud: For traditional net-
works and computer-based systems, quality prediction is
usually done through continuous monitoring, followed by
data analysis, mining, and modeling of the performance
trends. For cloud services, however, quality prediction will
be much more complicated because of the reasons we
discuss below.

First, different service level agreements (SLAs) may be
associated with different service subscriptions (from differ-
ent service users) for the same service. This implies that
simply correlating and mining the overall performance data
from the cloud infrastructure may not reflect the actual
situation of the service quality provisioning, as this depends

on the specific SLA (per user). Currently, infrastructure
monitoring is usually done at the server level and not at
the instance level, because of the relatively high overhead
involved in the latter.

Second, due to the composite nature of cloud services,
simply monitoring and modeling the performance of their
front-end servers might not give a full, comprehensive view
on what can possibly be provided by the cloud services.
What we need to know are the SLAs along the chain of
all the cloud services involved, as well as their real-time
performance data. For example, in order to understand in
detail the performance of a given software service, what
we need to know is not only the performance of the front-
end service server, but more importantly, the performance of
the (possibly third-party) back-end infrastructure service that
provides capabilities to the front-end as well as the SLAs
between them. Those SLAs may include the maximum ca-
pability that can be allocated from the infrastructure service
to the software service, the current performance situation of
the front-end server and the back-end infrastructure service,
and also contract terms, such as the price that the software
service provider is willing to pay for the purchase of quality
from the infrastructure service provider.

Third, for traditional software services, the quality pro-
visioning is usually done by allocating internally available
resources (computing, network, storage) and deploying soft-
ware to those resources accordingly. However, for cloud
services the quality provisioning needs to be done involving
quality “purchases” from infrastructure service providers,
i.e., resources are “purchased” on-demand. As a result,
the delay incurred in the quality “purchase” needs to be
taken into consideration for cloud services. Note that this
delay can be much longer than the time taken for the
internally available resources to be allocated in the setting
of more traditional software services. This poses additional
challenges to quality prediction. For instance, the lead time
from when the prediction results are available until when the
actual failure occurs needs to be longer, in order to facilitate
the additional time required for quality “purchase” in case
an adaptation is required.

2) Leveraging Large Event Streams Towards Prediction:
The Future Internet will lead to a proliferation of heteroge-
neous data sources and an increased amount and frequency
of monitoring events. A major source for those events will be
the Internet of Things, providing access to smart sensors and
devices at an unprecedented scale. On the one hand, such
data may provide better prediction techniques, as more data
is available to reason on future situations (see Section II-A2
above). On the other hand, such complex streams of events
lead to issues such as how to process those data streams in
real-time in order to perform useful online quality prediction.

The area of Complex Event Processing (CEP) is dealing
with the real-time identification of meaningful situations
from streams of raw events. Raw events correspond to simple



observations (e.g., a sensor read, result of pinging a server,
etc.), whereas a situation (or a complex event) corresponds
to some combination of raw events, such as a sequence, a
trend, or some aggregation of values.

Event patterns that frequently occur in historic data can
often be identified through data mining methods. Those
methods can also serve towards discovery of predictive event
patterns [36]. When a predictive event pattern is matched
during run-time, it may predict — with some calculated
confidence — the occurrence of a future event. Predictive
CEP therefore corresponds to the ability to predict a future
raw or complex event by real-time processing of streams of
raw events. Note that both CEP and predictive CEP require
that the specific event patterns be identified during design
time, and that the connection between those patterns and
the current or future complex events be represented in the
run-time engine as a set of rules. This may poses some
limitations for the applicability in the highly dynamic setting
of the Future Internet and thus needs further investigation.

Predictive CEP can be potentially applied to service
adaptation. A service is constantly monitored for various
indicators. If the deterioration of quality of the service can
be represented as a pattern on those indicators, or the data
can point out the connection between the change of indicator
values and the deterioration of quality, then predictive CEP is
an appropriate tool to represent this connection and translate
it to efficient runtime execution that combines monitoring
and prediction.

Furthermore, CEP lends itself easily to expression of
temporal conditions. Often, the decision making which is
triggered by a prediction is time-dependent. For example,
if a service is expected to deteriorate only after several
hours, it may not make sense to purchase the more expensive
alternative immediately. Therefore, a prediction of a future
event should indicate not only which event is likely to occur,
but also when it is likely to occur. If the data we have is
sufficiently rich to provide an indication on the time range
between the occurrence of the predictive pattern and the
expected occurrence of the predicted event, then CEP rules
may express this time expectation (or probability distribution
over the time of occurrence of the future event), and leverage
this information towards decision making.

III. CONCLUSIONS

Initial research results on online quality prediction for
proactive adaptation of service-oriented systems exist. How-
ever, many research challenges in this area remain open, and
many novel challenges will arise due to the emergence of
the Future Internet. This paper has discussed six research
challenges, within three main clusters: (z) handling hetero-
geneity during predictions, (¢7) assessing the relevance of
predictions, and (#¢¢) impact of cloud computing and large
event streams on prediction techniques. We are confident

that solving those challenges will have a profound impact
on research and practice.
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