©S-ELIBE

Analyzing Service-Oriented Systems
Using Their Data and Structure

Dragan lvanovi¢,! Manuel Carro,12
Manuel Hermenegildol-2

lUniversidad Politécnica de Madrid, 2IMDEA Software Institute Madrid

S-Cube@ICSE 2012 - Zurich - June 5, 2012

Outline Secuse

m Analyze behavior of service (compositions) by taking into
account complex control structures and impact of data.
» Traditionally: stress on control structure.

e E.g. Petri Nets, pi-calculus, STS, Reo.
e But: loops/sub-workflows/compositionality/recursion:
non-trivial!

» Integrating the impact of data content / size:

functional behavior
QoS properties

e On modeling / predicting {
m We present two of our approaches to:

u Ensuring consistency in service compositions

a Predicting SLA Violations

©S-ELI B E

E} Consistency in Service Compositions

Data Attributes QDe-cusE

m User-defined attributes can be used to characterize
data
» Domain-specific view - application dependent
» E.g.: content, quality, privacy...
» Possibly: a combination of views
» Known for input data, implicit in control/data dependencies

m Challenge: to infer user-defined attributes for data items
and activities on different levels in an orchestration,
automatically from:

» known attributes of input data,
» control structure, and
» alertdata operations.

ApproaCh ©S-EUBE

Input data context Workflow definition Resulting context

User perspective

Input concept lattice Resulting concept lattice

Horn clause program

W(X1,X2,A1,Y1,A2,Y2,A3,21,A4,22) :~
AL=£1(X1),
Y1=£1Y1(X1),
K2=£2(X2),
Y2=£2Y2(X2),
A3=£3(Y1,Y2),

Input substitution Sharing analysis Abstract substitution

Xim£UL,02), - Abstract interpretation
X2=£(U1), - Sharing+freeness domain

X3¢, - CiaoDE / CiaoPP suite

Underlying techniques and artifacts

More info can be found in our previous work on automated attribute
inference in complex service workflows [SCC-2011].
I

An Example Workflow Qscuse

x: Patient ID

B e e N
| ,Q: S y: Medical history

|

|

|

|

|

|

|

ay: Retrieve
medical history

z: Medication record

m An example showing medication prescription workflow.
m Written using BPMN (Business Process Modeling Notation).

» A high-level (non-executable) description.
I

An Example Sub-Workflow QDe-cusE

y: Medical history D» —————— L
! c: Criterion
I

z: Medication record Q» 7/ —————— N | oo 7-D» 777777
’ o |
/ v

x| Y p: Prescription candidate
asy: Run tests to as: Search
@ produce medication medication - - - - - D
criteria databases

Result
sufficiently
specific?

m Workflow implementing the component service a, in the
main workflow.

m Involves sub-activities and additional data items.
m Includes looping based on data.

FCA Contexts

\ Symptoms Tests Coverage
Medical history v v
Medication record v v

(a) Characteristics of medical databases.

| Name Address PIN SSN

©S-DUBE

Passport v v
National Id Card v v v
Driving License v v
Social Security Card v v v

(b) Types of identity documents.

m Notions of context in Formal Concept Analysis (FCA):
a Boolean relationship between objects and attributes.
» E.g.: databases from which items y (Medical history) and z
(Medication record) are retrieved use attributes Symptoms,

Tests and Coverage.

» If input x (Patient ID) is a passport, it has Name and PIN.

m Contexts can be converted into concept lattices.
I

Sharing in Orchestrations s.cuae

x: Patient ID

I

I

] N medical history AN medication
L \ AN E

m An activity inherits attributes of data it uses (reads).
» The attributes may be inherited by data it writes.
» It may introduce new attributes from its own sources.

m E.g.: a1 reads x and the medical history database
= a1 and y share attributes Name, PIN, Symptoms and Tests.

m Sharing is transitive: e.qg., a4 shares all attributes of y.

B Goal: assign a minimal set of attributes to all activities and all
intermediate / final data items in the orchestration.

Sharing and Complex Control s.cume

y: Medical history | F---- -~ .
! c: Criterion

I
z: Medication record Q» 7/ 777777 3 : .- —)D» 777777
’ I |

/ v

Y Y p: Prescription candidate
agy: Run tests to ag: Search
@ produce medication medication | ----- >D
criteria databases

Result
sufficiently
specific?

m Sharing analysis non-trivial in presence of complex
control:
» loops
» branching (if-then-else)
» recursion, non-determinism, etc.

m Solution: use approximation: minimal sharing superset
conservative: no potential sharing excluded.

Sharing Analysis “Under the Hood” &> .

m Using sharing and freeness analysis for logic variables in
Horn-clause programs.
» based on abstract interpretation;
» well-studied, powerful analysis tools (CiaoPP);
» logic variables: placeholders for FOL terms
(“sanitized pointers”)
m Converting the workflow into a Horn-clause program.
» mechanically;
» keeping only the part of semantics relevant for sharing;
» data items and activities — logic variables;
» not mimicking full operational behavior
m The analysis works with and outputs abstract substitutions:
» approximations that represent infinite families of sharing
situations in a finite form;
» can be set up from a context/lattice: input substitutions;
» can be represented as a context/lattice: sharing results.

Resulting Context (From Sharing) & ., ..

Item Name PIN | Symp. Tests Cover.
v v
d v v
e v 4
2 v v v v
. Py e | V v v v
w| | v V|V
v v

m Attributes of input data preserved
» X, d, e in the upper part

m Attributes of intermediate data & activities inferred from
the lattice

» For activities: attributes of the accessed data
» Again: safe approximation - all potential attributes included

Information Flow Example QDe-cusE

Main medical workflow

Health
Organization
}H ®

Workflow for service as.

Medical
Examiners

Provider

Registry & | Medication

Archive

as: Log treatment

m Distributing execution of the workflow(s) across

organizations

» Composition fragments assigned to swim-lanes (partners)
» Basis: protecting sensitive data

e Medical examiners cannot see insurance coverage

e Medication providers cannot see medical tests

e Registry can see only the patient ID.

Applications Sscuse

m Knowing the data attributes at design time
can be used for:

» Supporting fragmentation
o What parts can be enacted in a distributed fashion?
e.g., based on the information flow.

» Checking data compliance
e |s “sufficient” data passed to components?
e.g., can all activities be completed with all possible types
of Patient ID?
» Robust top-down development
e Refining specifications of workflow (sub-)components

e.g., iteratively decomposing “black box” composition
components.

©S-ELI B E

a Predicting SLA Violations

Data-Sensitive QoS Bounds

, QoS

QoS

Input data measure

'Input data measure

QoS

Input data measure

‘Input data measure

©S-EUBE

Good for aggregate

measures.
Focus: Usually simol
sually simpler
[Average to calculate.
Case
Not very informa-
tive for individual
running instances.
Can be combined
with the average
Focus: case approach.
| Upper/ More difficult
Lower to calculate.
Bounds

Useful for monitoring/
adapting individual

~

Insensitive to Input Data

~-

Sensitive to Input Data

running instances.

General idea: More information = more precision

Motivation s.cune

El Predicting imminent SLA violations:

» Given knowledge on QoS metrics for component services.
» Enabling us to abort / adapt ahead of time = prevention.
» Inversely: certain SLA compliance = reuse of resources.

H Predicting potential SLA violations:

» Contingency planning for the case of failure.
» Defining a range of adaptation actions.

El Identifying SLA succ/failure scenarios: conditions and
events that lead to SLA compliance/failure.

» Exploring relationship between:

e QoS metrics (overall and component services).
e Structural parameters (branches, loops).
e Data sent or received.

Overall Architecture

External
Services

send/receive

©S-CUBE

—— > event flow

lifecycle events

proc start/stop lg
Process |_invoke/reply ~ M
Engine continuation €
other events g
w
adaptation
actions

R
-M hani —
echanism QoS metrics

continuation QoS

QoS prediction Predictor

\{

p- Continuation: describing the
remainder of the orchestration
from the point of prediction
until finish.

= lower coupling
= stateless implementation

More info can be found in our previous work on constraint-based prediction

of SLA violations [ICSOC-2011].

Continuations Qscuse

m Use specific language for continuations.

» Accepted by the predictor.
» Used to derive constraint model.

m Obtaining continuation:

» By external observation:
e Needs orchestration definition, plus
e orchestration / engine state, plus
o lifecycle / execution events.
May fall out of sync if information is incomplete
or if the process is dynamically changed/adapted

» Directly from the execution engine:
e Always implicitly present in the interpreter state.
e The engine may be “doctored” to provide it explicitly.
e (Currently working on a prototype.)

Constraint-Based Prediction Steps &_ _ ..

Continuation SLA
Metrics l Monitoring objective

model events ‘
Constraint
satisfaction Solve)
problem CSP
(CSP) fas;:-t:'e

E Formulate a CSP that models QoS for the executing
orchestration instance.

E1 Solve the CSP against the given SLA objective.
> For two cases: SLA compliance and SLA failure.

Formulating CSP s.cuae

m CSP built structurally by decomposing the continuation into
individual orchestration constructs:

sequences e parallel flows e service invocations e conditionals e loops

B QoS metrics of complex structures conservatively built from
components’ — logically sound if components’ are sound.

m Metrics for the continuation = metrics for top-level construct.

m Can use known run-time data or computational cost
analysis for services:
» Infers upper and lower bound on # of iterations (k)
e as functions of data
e safe approximations
e bounds coincide = exact k
» Can be pre-computed statically or computed at run-time.

More info can be found in our previous work on predictive monitoring
[MONA+2009] and data-aware QoS-driven adaptation [ICWS-2010] for
service orchestrations.

Example: Prediction Inputs QDecusE

User ID

Retrieve Reuse current

stable

I
account > content i
record S profile as '
RN ho Write
N configuration

Retrieve Generate new

usage content
patterns —stable profile

Usage patterns Content profile

Assumptions about components: Metrics: execution time

Time bounds (ms)

LB UB SLA objective:
T 0 10
ar | 500 800 Tmax =1500ms
as | 200 500
as | 100 400 (from orchestration start)
as | 200 600
ag | 100 300

Example (Cont.): Formulating CSP _ ..

User ID

Retrieve Reuse current

account content

record profile J

1 no Write
. configuration

Retrieve Generate new

usage content @
patterns profile

500ms < Ty, <800ms

! | 1200ms<Tg4<600msi =
3 200ms < Ty, <500ms !

T/ =(k+1)x (T+Tg) | |100ms<Tg <300ms |

:I T=Ta1+Ta4+Ta8+3XT i

Example (Cont.): Solving CSP s.cume

User ID

Retrieve Reuse current

account o content
record \\\\ profile o k times
o Retrieve \Generate n
usage content 4@
patterns —stable profile
Usage patterns Content profile
T < Tmax When either: T > Tmax When:
m stable=1, or m stable=0and k>3

m stable=0and k<11.

stable branch taken = SLA compliance ensured!
k < 3 at “yes” exit froma; = SLA compliance ensured!
k>12 = imminent SLA failure!

(Prediction at the orchestration start - becomes more precise later.)
I

Evaluation Qscuse

m Execution time of an industrial process: realistic data.
» Ongoing work with colleagues from TUW and UniDuE.
» 100 test runs, median execution time: 36923 ms.
» Continuous prediction (cca 160 times) for each instance.
» Looking at first definite succ/fail prediction per instance.
> Tmax chosen to reflect failure rates between 0% and 100%.

m High prediction accuracy (94% to 100%) for different Tmax
(= % of correctly predicted cases)

m Prediction timing:

» Able to predict SLA compliance early for reasonable failure rates.
» SLA failures predicted between 5000 ms and 9000 ms before
happening.

m Constraint-based prediction proven very efficient:

» 295 to 490 ms to run 160 predictions per instance.
» ~1—2% of instance execution time.

Outlook of Future Work QDecusE

m Sharing-based analysis allows mathematical
(object-attribute/lattice) treatment of data dependencies
and properties.

» Extend towards minimal sharing and adaptation
constraints.

» Automate derivation of Horn-Clause programs from
executable specification (BPEL, XPDL, Yawl, etc.)

» Extend to include stateful conversations.

m Constraint-based QoS prediction is a efficient, robust
and accurate run-time technique for service
orchestrations.x

» Continue with experimental / real life evaluation.

» Interfacing with various process engines.

» Explore in depth the effects of inaccurate / imprecise
information about component service QoS.

» Enrich the model to cope with imprecision.

©S-ELIBE

Analyzing Service-Oriented Systems
Using Their Data and Structure

Dragan lvanovi¢,! Manuel Carro,12
Manuel Hermenegildol-2

lUniversidad Politécnica de Madrid, 2IMDEA Software Institute Madrid

S-Cube@ICSE 2012 - Zurich - June 5, 2012

	Consistency in Service Compositions
	Predicting SLA Violations

