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Outline

Analyze behavior of service (compositions) by taking into
account complex control structures and impact of data.
É Traditionally: stress on control structure.

• E.g. Petri Nets, pi-calculus, STS, Reo.
• But: loops/sub-workflows/compositionality/recursion:

non-trivial!
É Integrating the impact of data content / size:

• On modeling / predicting
�

functional behavior
QoS properties

We present two of our approaches to:

1 Ensuring consistency in service compositions

2 Predicting SLA Violations



1 Consistency in Service Compositions



Data Attributes

User-defined attributes can be used to characterize
data
É Domain-specific view – application dependent
É E.g.: content, quality, privacy...
É Possibly: a combination of views
É Known for input data, implicit in control/data dependencies

Challenge: to infer user-defined attributes for data items
and activities on different levels in an orchestration,
automatically from:
É known attributes of input data,
É control structure, and
É alertdata operations.



Approach
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Resulting context

Input concept lattice Resulting concept lattice

w(X1,X2,A1,Y1,A2,Y2,A3,Z1,A4,Z2):-
A1=f1(X1),
Y1=f1Y1(X1),
A2=f2(X2),
Y2=f2Y2(X2),
A3=f3(Y1,Y2),
...

Horn clause program

...
X1=f(U1,U2),
X2=f(U1),
X3=f,
...

Input substitution

- Abstract interpretation
- Sharing+freeness domain
- CiaoDE / CiaoPP suite

Sharing analysis
[[X1,A1,Y1,A3,Z1],
[A3,Z1,A4,Z2],
[X2,A4,Z2],
[X2,A2,Y2,A3,Z1,A4,Z2]]

Abstract substitution

Fig. 3. Overview of the approach.

need to be mapped to appropriate objects (in this case the
Medical history and the Medication record from Fig. 5(a)).

IV. APPLYING SHARING ANALYSIS

Our application of sharing analysis to elicit new knowledge
about attributes of the workflow entities is based on three
points: (a) representing the control structures of the workflow
in a language amenable to analysis, (b) representing data links
and activities in the workflow as explicit variables, and (c)
representing attributes of these entities as additional hidden
variables which can share with the variables set up in (b). Two
variables share if there is some object which is reachable from
both, maybe following a reference chain. By inferring how
runtime variables can share in the programming language rep-
resentation of the workflow we deduce the runtime attributes
of data items and activities in the workflow.

A. Workflows as Horn Clauses

The sharing analysis tools we will use [7], [6] work on logic
programs, and therefore the workflow under consideration

Symptoms Tests Coverage
Medical history

Medication record

(a) Characteristics of medical databases.

Name Address PIN SSN
Passport

National Id Card
Driving License

Social Security Card

(b) Types of identity documents.

Fig. 4. Two examples of contexts.

needs to be represented in the form of a logic program [14]: a
series of logical implications which can be operationally un-
derstood as stating which subgoals are needed to accomplish a
given goal. Note that the translation into a logic program does
not need to be operationally equivalent to the initial workflow;
it only needs to represent the data flow and data aliasing
correctly. We translate data flow into parameter passing and
data aliasing into unification of logical variables. Here we
build on [8], where examples of translations from an abstract
notation for workflows into Horn clauses are given. Due to size
constraints we cannot reproduce here the description of the
translation. Instead, we kindly direct the reader to [8] for more
details. A key ingredient of the translation is representing, for
each activity in the workflow, the sets of data items read and
written. This vantage point in workflow modeling is shared
with the existing approaches to the analysis of soundness
of Workflow Nets with Data (WFD nets) [18], as well as
with the approaches to verifying validity of business process
specifications using data-flow matrices [19]. However, unlike
those higher-level conceptual views that are mainly concerned
with various aspects of business process management, in our
case we aim at inferring properties on a more technical level
that takes into account details of (possibly complex and nested)
control flow and data operations. For that purpose, WFD nets
or UML activity diagrams are not sufficiently informative,
while Horn clauses provide an adequate computation paradigm
that has been extensively studied.

As an illustration, we give here a commented translation
of our workflow written in BPMN (Figs. 1 and 2) into Horn
clauses. The translation for this case is given in Fig. 6 using
Prolog syntax, and will be explained in the following text.

Lines 1-8 are a Horn clause that defines the predicate w for
the workflow with a list of comma-separated goals in the body
(lines 2-8) following the definition symbol “:-”. Character “%”

More info can be found in our previous work on automated attribute
inference in complex service workflows [SCC-2011].



An Example Workflow

+

a1: Retrieve
medical history

a2: Retrieve
medication record

+

x: Patient ID

�

a4: Select new
medication

a3: Continue last
prescription

¬stable

stable

� a5: Log treatment

y: Medical history

z: Medication record

Fig. 1. An example drug prescription workflow.

a41: Run tests to
produce medication

criteria

a42: Search
medication
databases

Result
sufficiently
specific?

no yes

y: Medical history

z: Medication record

c: Criterion

p: Prescription candidate

Fig. 2. Selection of new medication.

In order to make concepts useful for analysis, we need to
organize them into concept lattices. A lattice is a mathemat-
ical structure (L,≤,∨,∧) built around a set L (in our case
containing concepts from a context), a partial order relation
≤, the least upper bound (LUB) operation ∨, and the greatest
lower bound (GLB) operation ∧. For arbitrary x,y ∈ L, the
element x∨ y = z has the property x ≤ z and y ≤ z, but it is
also the least such element, i.e., for any other w ∈ L such that
x ≤ w and y ≤ w, we have z ≤ w. The case for the greatest
lower bound operation ∧ is symmetric. In this paper, we deal
only with finite and complete lattices, where for any arbitrary
non-empty subset of lattice elements the LUB and the GLB
exist in L; such lattices have unique greatest (�) and least (⊥)
elements.

For concept lattices, the ordering relation ≤ between two
concepts B1 and B2 holds iff B1 ⊆ B2, or, equivalently, iff
B�

2 ⊆ B�
1: a higher concept includes all objects from a lower

(or derived) one; lower concepts are derived from higher ones
by adding attributes. Consequently, the LUB is obtained using
B1 ∩B2, and the GLB using B1 ∪B2.

Context lattices are usually represented using a variant
of Hasse diagrams (Fig. 5). Nodes correspond to concepts,
with the top concept visually on the top, and the bottom
concept placed accordingly. The annotations associated with
a concept (using dashed lines) show the attributes introduced
by the concept (besides the derived attributes from the higher
concepts) above the line, and the objects that belong to that
concept, but not to any of its derived concepts, below the line.

Concepts may have one or both parts of the annotation empty;
in the latter case, the annotation is not shown.

Fig. 5 presents the concept lattices for the medical database
contexts from Fig. 4. The most general concepts are shown on
top of the lattices, and the most specific (empty in both cases)
at the bottom.

B. Describing Data with Concept Lattices

The data items that are input to the workflow need to be
mapped to the appropriate objects in the input concept lattice.
In the case of our example (Fig. 1), we would need to map
the Patient ID input data item to either Passport, National ID,
Driving License, or Social Security Card. In our example, each
of those objects maps to a different concept in the lattice, but
in general several objects can map to the same concept.

The prerequisite in order to use concept lattices is to create
an adequate context at a level of abstraction that captures
enough information to represent all relevant concepts and
their attributes. Complex models can always be simplified by
keeping only those attributes that really discriminate between
different concepts. Existing tools (e.g., ConExp, Lattice Miner,
Colibri and others [1]) facilitate the process of eliciting and
exploring knowledge using FCA.

A relevant point is that some data sources may not appear
explicitly as workflow inputs. In Fig. 1, activities a1 and a2
need to access some external source to extract records using
the input Patient ID. The attributes of the retrieved records
depend on properties of these data sources and therefore, they

An example showing medication prescription workflow.
Written using BPMN (Business Process Modeling Notation).

É A high-level (non-executable) description.



An Example Sub-Workflow

+

a1: Retrieve
medical history

a2: Retrieve
medication record

+

x: Patient ID

�

a4: Select new
medication

a3: Continue last
prescription

¬stable

stable

� a5: Log treatment

y: Medical history

z: Medication record

Fig. 1. An example drug prescription workflow.

a41: Run tests to
produce medication

criteria

a42: Search
medication
databases

Result
sufficiently
specific?

no yes

y: Medical history

z: Medication record

c: Criterion

p: Prescription candidate

Fig. 2. Selection of new medication.

In order to make concepts useful for analysis, we need to
organize them into concept lattices. A lattice is a mathemat-
ical structure (L,≤,∨,∧) built around a set L (in our case
containing concepts from a context), a partial order relation
≤, the least upper bound (LUB) operation ∨, and the greatest
lower bound (GLB) operation ∧. For arbitrary x,y ∈ L, the
element x∨ y = z has the property x ≤ z and y ≤ z, but it is
also the least such element, i.e., for any other w ∈ L such that
x ≤ w and y ≤ w, we have z ≤ w. The case for the greatest
lower bound operation ∧ is symmetric. In this paper, we deal
only with finite and complete lattices, where for any arbitrary
non-empty subset of lattice elements the LUB and the GLB
exist in L; such lattices have unique greatest (�) and least (⊥)
elements.

For concept lattices, the ordering relation ≤ between two
concepts B1 and B2 holds iff B1 ⊆ B2, or, equivalently, iff
B�

2 ⊆ B�
1: a higher concept includes all objects from a lower

(or derived) one; lower concepts are derived from higher ones
by adding attributes. Consequently, the LUB is obtained using
B1 ∩B2, and the GLB using B1 ∪B2.

Context lattices are usually represented using a variant
of Hasse diagrams (Fig. 5). Nodes correspond to concepts,
with the top concept visually on the top, and the bottom
concept placed accordingly. The annotations associated with
a concept (using dashed lines) show the attributes introduced
by the concept (besides the derived attributes from the higher
concepts) above the line, and the objects that belong to that
concept, but not to any of its derived concepts, below the line.

Concepts may have one or both parts of the annotation empty;
in the latter case, the annotation is not shown.

Fig. 5 presents the concept lattices for the medical database
contexts from Fig. 4. The most general concepts are shown on
top of the lattices, and the most specific (empty in both cases)
at the bottom.

B. Describing Data with Concept Lattices

The data items that are input to the workflow need to be
mapped to the appropriate objects in the input concept lattice.
In the case of our example (Fig. 1), we would need to map
the Patient ID input data item to either Passport, National ID,
Driving License, or Social Security Card. In our example, each
of those objects maps to a different concept in the lattice, but
in general several objects can map to the same concept.

The prerequisite in order to use concept lattices is to create
an adequate context at a level of abstraction that captures
enough information to represent all relevant concepts and
their attributes. Complex models can always be simplified by
keeping only those attributes that really discriminate between
different concepts. Existing tools (e.g., ConExp, Lattice Miner,
Colibri and others [1]) facilitate the process of eliciting and
exploring knowledge using FCA.

A relevant point is that some data sources may not appear
explicitly as workflow inputs. In Fig. 1, activities a1 and a2
need to access some external source to extract records using
the input Patient ID. The attributes of the retrieved records
depend on properties of these data sources and therefore, they

Workflow implementing the component service 4 in the
main workflow.
Involves sub-activities and additional data items.
Includes looping based on data.



FCA Contexts
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w(X1,X2,A1,Y1,A2,Y2,A3,Z1,A4,Z2):-
A1=f1(X1),
Y1=f1Y1(X1),
A2=f2(X2),
Y2=f2Y2(X2),
A3=f3(Y1,Y2),
...

Horn clause program

...
X1=f(U1,U2),
X2=f(U1),
X3=f,
...

Input substitution

- Abstract interpretation
- Sharing+freeness domain
- CiaoDE / CiaoPP suite

Sharing analysis
[[X1,A1,Y1,A3,Z1],
[A3,Z1,A4,Z2],
[X2,A4,Z2],
[X2,A2,Y2,A3,Z1,A4,Z2]]

Abstract substitution

Fig. 3. Overview of the approach.

need to be mapped to appropriate objects (in this case the
Medical history and the Medication record from Fig. 5(a)).

IV. APPLYING SHARING ANALYSIS

Our application of sharing analysis to elicit new knowledge
about attributes of the workflow entities is based on three
points: (a) representing the control structures of the workflow
in a language amenable to analysis, (b) representing data links
and activities in the workflow as explicit variables, and (c)
representing attributes of these entities as additional hidden
variables which can share with the variables set up in (b). Two
variables share if there is some object which is reachable from
both, maybe following a reference chain. By inferring how
runtime variables can share in the programming language rep-
resentation of the workflow we deduce the runtime attributes
of data items and activities in the workflow.

A. Workflows as Horn Clauses

The sharing analysis tools we will use [7], [6] work on logic
programs, and therefore the workflow under consideration

Symptoms Tests Coverage
Medical history

Medication record

(a) Characteristics of medical databases.

Name Address PIN SSN
Passport

National Id Card
Driving License

Social Security Card

(b) Types of identity documents.

Fig. 4. Two examples of contexts.

needs to be represented in the form of a logic program [14]: a
series of logical implications which can be operationally un-
derstood as stating which subgoals are needed to accomplish a
given goal. Note that the translation into a logic program does
not need to be operationally equivalent to the initial workflow;
it only needs to represent the data flow and data aliasing
correctly. We translate data flow into parameter passing and
data aliasing into unification of logical variables. Here we
build on [8], where examples of translations from an abstract
notation for workflows into Horn clauses are given. Due to size
constraints we cannot reproduce here the description of the
translation. Instead, we kindly direct the reader to [8] for more
details. A key ingredient of the translation is representing, for
each activity in the workflow, the sets of data items read and
written. This vantage point in workflow modeling is shared
with the existing approaches to the analysis of soundness
of Workflow Nets with Data (WFD nets) [18], as well as
with the approaches to verifying validity of business process
specifications using data-flow matrices [19]. However, unlike
those higher-level conceptual views that are mainly concerned
with various aspects of business process management, in our
case we aim at inferring properties on a more technical level
that takes into account details of (possibly complex and nested)
control flow and data operations. For that purpose, WFD nets
or UML activity diagrams are not sufficiently informative,
while Horn clauses provide an adequate computation paradigm
that has been extensively studied.

As an illustration, we give here a commented translation
of our workflow written in BPMN (Figs. 1 and 2) into Horn
clauses. The translation for this case is given in Fig. 6 using
Prolog syntax, and will be explained in the following text.

Lines 1-8 are a Horn clause that defines the predicate w for
the workflow with a list of comma-separated goals in the body
(lines 2-8) following the definition symbol “:-”. Character “%”

Notions of context in Formal Concept Analysis (FCA):
a Boolean relationship between objects and attributes.
É E.g.: databases from which items y (Medical history) and z

(Medication record) are retrieved use attributes Symptoms,
Tests and Coverage.

É If input  (Patient ID) is a passport, it has Name and PIN.
Contexts can be converted into concept lattices.



Sharing in Orchestrations

+

a1: Retrieve
medical history

a2: Retrieve
medication record

+

x: Patient ID

�

a4: Select new
medication

a3: Continue last
prescription

¬stable

stable

� a5: Log treatment

y: Medical history

z: Medication record

Fig. 1. An example drug prescription workflow.

a41: Run tests to
produce medication

criteria

a42: Search
medication
databases

Result
sufficiently
specific?

no yes

y: Medical history

z: Medication record

c: Criterion

p: Prescription candidate

Fig. 2. Selection of new medication.

In order to make concepts useful for analysis, we need to
organize them into concept lattices. A lattice is a mathemat-
ical structure (L,≤,∨,∧) built around a set L (in our case
containing concepts from a context), a partial order relation
≤, the least upper bound (LUB) operation ∨, and the greatest
lower bound (GLB) operation ∧. For arbitrary x,y ∈ L, the
element x∨ y = z has the property x ≤ z and y ≤ z, but it is
also the least such element, i.e., for any other w ∈ L such that
x ≤ w and y ≤ w, we have z ≤ w. The case for the greatest
lower bound operation ∧ is symmetric. In this paper, we deal
only with finite and complete lattices, where for any arbitrary
non-empty subset of lattice elements the LUB and the GLB
exist in L; such lattices have unique greatest (�) and least (⊥)
elements.

For concept lattices, the ordering relation ≤ between two
concepts B1 and B2 holds iff B1 ⊆ B2, or, equivalently, iff
B�

2 ⊆ B�
1: a higher concept includes all objects from a lower

(or derived) one; lower concepts are derived from higher ones
by adding attributes. Consequently, the LUB is obtained using
B1 ∩B2, and the GLB using B1 ∪B2.

Context lattices are usually represented using a variant
of Hasse diagrams (Fig. 5). Nodes correspond to concepts,
with the top concept visually on the top, and the bottom
concept placed accordingly. The annotations associated with
a concept (using dashed lines) show the attributes introduced
by the concept (besides the derived attributes from the higher
concepts) above the line, and the objects that belong to that
concept, but not to any of its derived concepts, below the line.

Concepts may have one or both parts of the annotation empty;
in the latter case, the annotation is not shown.

Fig. 5 presents the concept lattices for the medical database
contexts from Fig. 4. The most general concepts are shown on
top of the lattices, and the most specific (empty in both cases)
at the bottom.

B. Describing Data with Concept Lattices

The data items that are input to the workflow need to be
mapped to the appropriate objects in the input concept lattice.
In the case of our example (Fig. 1), we would need to map
the Patient ID input data item to either Passport, National ID,
Driving License, or Social Security Card. In our example, each
of those objects maps to a different concept in the lattice, but
in general several objects can map to the same concept.

The prerequisite in order to use concept lattices is to create
an adequate context at a level of abstraction that captures
enough information to represent all relevant concepts and
their attributes. Complex models can always be simplified by
keeping only those attributes that really discriminate between
different concepts. Existing tools (e.g., ConExp, Lattice Miner,
Colibri and others [1]) facilitate the process of eliciting and
exploring knowledge using FCA.

A relevant point is that some data sources may not appear
explicitly as workflow inputs. In Fig. 1, activities a1 and a2
need to access some external source to extract records using
the input Patient ID. The attributes of the retrieved records
depend on properties of these data sources and therefore, they

An activity inherits attributes of data it uses (reads).
É The attributes may be inherited by data it writes.
É It may introduce new attributes from its own sources.

E.g.: 1 reads  and the medical history database
⇒ 1 and y share attributes Name, PIN, Symptoms and Tests.
Sharing is transitive: e.g., 4 shares all attributes of y.
Goal: assign a minimal set of attributes to all activities and all
intermediate / final data items in the orchestration.



Sharing and Complex Control
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a1: Retrieve
medical history

a2: Retrieve
medication record

+

x: Patient ID

�

a4: Select new
medication

a3: Continue last
prescription

¬stable

stable

� a5: Log treatment

y: Medical history

z: Medication record

Fig. 1. An example drug prescription workflow.

a41: Run tests to
produce medication

criteria

a42: Search
medication
databases

Result
sufficiently
specific?

no yes

y: Medical history

z: Medication record

c: Criterion

p: Prescription candidate

Fig. 2. Selection of new medication.

In order to make concepts useful for analysis, we need to
organize them into concept lattices. A lattice is a mathemat-
ical structure (L,≤,∨,∧) built around a set L (in our case
containing concepts from a context), a partial order relation
≤, the least upper bound (LUB) operation ∨, and the greatest
lower bound (GLB) operation ∧. For arbitrary x,y ∈ L, the
element x∨ y = z has the property x ≤ z and y ≤ z, but it is
also the least such element, i.e., for any other w ∈ L such that
x ≤ w and y ≤ w, we have z ≤ w. The case for the greatest
lower bound operation ∧ is symmetric. In this paper, we deal
only with finite and complete lattices, where for any arbitrary
non-empty subset of lattice elements the LUB and the GLB
exist in L; such lattices have unique greatest (�) and least (⊥)
elements.

For concept lattices, the ordering relation ≤ between two
concepts B1 and B2 holds iff B1 ⊆ B2, or, equivalently, iff
B�

2 ⊆ B�
1: a higher concept includes all objects from a lower

(or derived) one; lower concepts are derived from higher ones
by adding attributes. Consequently, the LUB is obtained using
B1 ∩B2, and the GLB using B1 ∪B2.

Context lattices are usually represented using a variant
of Hasse diagrams (Fig. 5). Nodes correspond to concepts,
with the top concept visually on the top, and the bottom
concept placed accordingly. The annotations associated with
a concept (using dashed lines) show the attributes introduced
by the concept (besides the derived attributes from the higher
concepts) above the line, and the objects that belong to that
concept, but not to any of its derived concepts, below the line.

Concepts may have one or both parts of the annotation empty;
in the latter case, the annotation is not shown.

Fig. 5 presents the concept lattices for the medical database
contexts from Fig. 4. The most general concepts are shown on
top of the lattices, and the most specific (empty in both cases)
at the bottom.

B. Describing Data with Concept Lattices

The data items that are input to the workflow need to be
mapped to the appropriate objects in the input concept lattice.
In the case of our example (Fig. 1), we would need to map
the Patient ID input data item to either Passport, National ID,
Driving License, or Social Security Card. In our example, each
of those objects maps to a different concept in the lattice, but
in general several objects can map to the same concept.

The prerequisite in order to use concept lattices is to create
an adequate context at a level of abstraction that captures
enough information to represent all relevant concepts and
their attributes. Complex models can always be simplified by
keeping only those attributes that really discriminate between
different concepts. Existing tools (e.g., ConExp, Lattice Miner,
Colibri and others [1]) facilitate the process of eliciting and
exploring knowledge using FCA.

A relevant point is that some data sources may not appear
explicitly as workflow inputs. In Fig. 1, activities a1 and a2
need to access some external source to extract records using
the input Patient ID. The attributes of the retrieved records
depend on properties of these data sources and therefore, they

Sharing analysis non-trivial in presence of complex
control:
É loops
É branching (if-then-else)
É recursion, non-determinism, etc.

Solution: use approximation: minimal sharing superset
conservative: no potential sharing excluded.



Sharing Analysis “Under the Hood”

Using sharing and freeness analysis for logic variables in
Horn-clause programs.
É based on abstract interpretation;
É well-studied, powerful analysis tools (CiaoPP);
É logic variables: placeholders for FOL terms

(“sanitized pointers”)
Converting the workflow into a Horn-clause program.
É mechanically;
É keeping only the part of semantics relevant for sharing;
É data items and activities → logic variables;
É not mimicking full operational behavior

The analysis works with and outputs abstract substitutions:
É approximations that represent infinite families of sharing

situations in a finite form;
É can be set up from a context/lattice: input substitutions;
É can be represented as a context/lattice: sharing results.



Resulting Context (From Sharing)

Item Name PIN Symp. Tests Cover.

x
d
e

a2 , z

a1 , y, p, a42 , c

a3 , a4 , a41

a5

Item Name Address SSN Symp. Tests Cover.

x
d
e

a2 , z

a1 , y, p, a42 , c

a3 , a4 , a41

a5

Fig. 10. The resulting context for the two analysis cases.

meaning of these output hidden variables has to be interpreted
in terms of the original attributes — starting with those of the
input data items. The sharing analysis of course preserves the
original relationship among the input top-level variables [8]:
if two variables a and b were associated in the input sharing
lattice to subsets of attributes A and B, respectively, such that
A ⊆ B, then for the corresponding subsets A1 and B1 to which
a and b map in the resulting sharing lattice, it is the case that
A1 ⊆ B1.

The next step is to construct a result concept lattice (Fig. 9)
based on the sharing analysis results where data items and
activities are considered as objects and the hidden variables
in the result are considered as a new set of attributes. The
activities are highlighted and framed, and the input data items
from the input concept lattice are set in boldface. In this lattice
we first assign the original attributes to the input data items,
and then pass them down to all the lower-level concepts. We
then obtain the resulting contexts (Fig. 10) for the two initial
cases aforementioned. Note that only the attributes that are
associated with some input data item may appear.

It should be noted that the construction of the resulting
concept lattice can be done in polynomial time with respect
to the number of objects (data items, activities) and attributes
[13]. Different algorithms for construction of concept lattices
differ in performance over different types of sparse contexts.

We want to note that in the most general case sharing
analysis is undecidable, and the results of the analyzer can
be a safe over-approximation which can indicate sharing
between variables when it could not be proved that there is
definitely no sharing. However, when it indicates no sharing,
then this is definitely the case. The assignment of attributes to
the workflow elements should be interpreted accordingly: the
absence of an attribute is always certain, but its presence is
not guaranteed.

We can now go back to the application cases mentioned in
Section II and illustrate how the information in the contexts
in Fig. 10 can be applied.

a) Fragmentation: The organization responsible for
medicine prescription may want to split the workflow among
several partners, based on what kind of information they are
allowed to handle. The basis for fragmentation is the resulting
contexts from Fig. 10. An example of fragmentation is shown
in Fig. 11. The swim lanes correspond to the health organi-
zation and its partners. Registry and Archive cannot handle
Symptoms, Tests, or Coverage data, and is therefore assigned
activity a5. Medical examiners can at most see Symptoms

and Tests, and are thus assigned the activities a1 and a42.
Medication providers can only take care of Symptoms and
Coverage, and are assigned activity a2. All other activities
(a3, a4 and a41) need full access and remain centrally handled
by the health organization.

b) Data Compliance: It may be known that a particular
kind of information identifying a patient, such as his/her
SSN, is required for retrieving the patient’s medication record
(activity a2), and that the patient’s address is required for
sending the results of tests (activity a42). It can therefore be
detected at design time that unless the patient is identified with
a Social Security Card, these activities will fail. The designer
may either restrict the use of the workflow by requiring the
card, or select implementations of the mentioned activities
with weaker success preconditions.

c) Robust Top-Down Development: Based on the char-
acterization of the input data items, designers can derive the
attributes of the data items in nested workflows. For instance,
the attributes of the medicine search criterion (c) and the
prescription candidate (p) are inferred in Fig. 10 in a safe
way.

VI. CONCLUSIONS

We have shown how an FCA-based characterization of input
data to a workflow can be enriched to include intermediate
data items and internal activities. These are annotated with
attributes which are inferred from emergent properties of
the workflow which stem from the workflow structure and
relationships between input data. We have shown how this
task can be automated by translating (a) an initial FCA into
a lattice from which sharing conditions are derived and (b)
the workflow structure into a logic program. Then, (a) and (b)
are subjected to a sharing analysis, and the results are mapped
back to a resulting lattice and that to a resulting context, whose
information can be used as a starting point for a number
of other tasks. We have illustrated this methodology with a
worked example.

As future work, we plan to address the development of
automatic translations from common business process spec-
ification languages (BPEL, XPDL, YAWL, etc.) into logic
programs amenable to sharing analysis in order to further test
and refine the techniques proposed herein. Besides, we plan to
explore other applications of the concept of sharing to services,
aiming not only at (local) data sharing between activities,
but also looking towards the representation of stateful service
conversations and quality aspects of services.

Attributes of input data preserved
É x, d, e in the upper part

Attributes of intermediate data & activities inferred from
the lattice
É For activities: attributes of the accessed data
É Again: safe approximation – all potential attributes included



Information Flow Example

Main medical workflow
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Fig. 11. An example fragmentation for the drug prescription workflow.
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Distributing execution of the workflow(s) across
organizations
É Composition fragments assigned to swim-lanes (partners)
É Basis: protecting sensitive data

• Medical examiners cannot see insurance coverage
• Medication providers cannot see medical tests
• Registry can see only the patient ID.



Applications

Knowing the data attributes at design time
can be used for:

É Supporting fragmentation

• What parts can be enacted in a distributed fashion?

e.g., based on the information flow.

É Checking data compliance

• Is “sufficient” data passed to components?

e.g., can all activities be completed with all possible types
of Patient ID?

É Robust top-down development

• Refining specifications of workflow (sub-)components

e.g., iteratively decomposing “black box” composition
components.



2 Predicting SLA Violations



Data-Sensitive QoS Bounds
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Can be combined
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More difficult
to calculate.

Useful for monitoring/
adapting individual
running instances.

General idea: More information ⇒ more precision



Motivation

1 Predicting imminent SLA violations:
É Given knowledge on QoS metrics for component services.
É Enabling us to abort / adapt ahead of time ⇒ prevention.
É Inversely: certain SLA compliance ⇒ reuse of resources.

2 Predicting potential SLA violations:
É Contingency planning for the case of failure.
É Defining a range of adaptation actions.

3 Identifying SLA succ/failure scenarios: conditions and
events that lead to SLA compliance/failure.
É Exploring relationship between:

• QoS metrics (overall and component services).
• Structural parameters (branches, loops).
• Data sent or received.



Overall Architecture
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continuation

QoS prediction
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predictions

QoS metrics

adaptation
actions

event flow

Continuation: describing the
remainder of the orchestration
from the point of prediction
until finish.
⇒ lower coupling
⇒ stateless implementation

More info can be found in our previous work on constraint-based prediction
of SLA violations [ICSOC-2011].



Continuations

Use specific language for continuations.
É Accepted by the predictor.
É Used to derive constraint model.

Obtaining continuation:
É By external observation:

• Needs orchestration definition, plus
• orchestration / engine state, plus
• lifecycle / execution events.

May fall out of sync if information is incomplete
or if the process is dynamically changed/adapted

É Directly from the execution engine:
• Always implicitly present in the interpreter state.
• The engine may be “doctored” to provide it explicitly.
• (Currently working on a prototype.)



Constraint-Based Prediction Steps

Constraint
satisfaction

problem
(CSP)

Continuation

Metrics
model

Monitoring
events

Solve
CSP

SLA
objective

SLA
compli-

ance

SLA
failure

1 Formulate a CSP that models QoS for the executing
orchestration instance.

2 Solve the CSP against the given SLA objective.
É For two cases: SLA compliance and SLA failure.



Formulating CSP
CSP built structurally by decomposing the continuation into
individual orchestration constructs:

sequences • parallel flows • service invocations • conditionals • loops

QoS metrics of complex structures conservatively built from
components’ → logically sound if components’ are sound.

Metrics for the continuation = metrics for top-level construct.

Can use known run-time data or computational cost
analysis for services:
É Infers upper and lower bound on # of iterations (k)

• as functions of data
• safe approximations
• bounds coincide ⇒ exact k

É Can be pre-computed statically or computed at run-time.

More info can be found in our previous work on predictive monitoring
[MONA+2009] and data-aware QoS-driven adaptation [ICWS-2010] for
service orchestrations.



Example: Prediction Inputs
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LB UB

τ 0 10
2 500 800
3 200 500
5 100 400
6 200 600
8 100 300

Metrics: execution time

SLA objective:

Tmx = 1500ms

(from orchestration start)



Example (Cont.): Formulating CSP
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Example (Cont.): Solving CSP
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T ≤ Tmx when either:

stbe = 1, or
stbe = 0 and k ≤ 11.

T > Tmx when:

stbe = 0 and k ≥ 3

stbe branch taken ⇒ SLA compliance ensured!
k < 3 at “yes” exit from 7 ⇒ SLA compliance ensured!

k ≥ 12 ⇒ imminent SLA failure!
(Prediction at the orchestration start – becomes more precise later.)



Evaluation

Execution time of an industrial process: realistic data.
É Ongoing work with colleagues from TUW and UniDuE.
É 100 test runs, median execution time: 36923ms.
É Continuous prediction (cca 160 times) for each instance.
É Looking at first definite succ/fail prediction per instance.
É Tmx chosen to reflect failure rates between 0% and 100%.

High prediction accuracy (94% to 100%) for different Tmx
(= % of correctly predicted cases)

Prediction timing:
É Able to predict SLA compliance early for reasonable failure rates.
É SLA failures predicted between 5000ms and 9000ms before

happening.

Constraint-based prediction proven very efficient:
É 295 to 490ms to run 160 predictions per instance.
É ≈ 1− 2% of instance execution time.



Outlook of Future Work

Sharing-based analysis allows mathematical
(object-attribute/lattice) treatment of data dependencies
and properties.
É Extend towards minimal sharing and adaptation

constraints.
É Automate derivation of Horn-Clause programs from

executable specification (BPEL, XPDL, Yawl, etc.)
É Extend to include stateful conversations.

Constraint-based QoS prediction is a efficient, robust
and accurate run-time technique for service
orchestrations.x
É Continue with experimental / real life evaluation.
É Interfacing with various process engines.
É Explore in depth the effects of inaccurate / imprecise

information about component service QoS.
É Enrich the model to cope with imprecision.



Analyzing Service-Oriented Systems
Using Their Data and Structure
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