
Grant Agreement N° 215483

Copyright © 2009 by the S-CUBE consortium – All rights reserved.

The research leading to these results has received funding from the European Community's Seventh Framework Programme
[FP7/2007-2013] under grant agreement n° 215483 (S-Cube).

Title: Quality Reference Model for SBA

Authors: CITY, CNR, FBK, INRIA, Lero, POLIMI, SZTAKI, TUW, UniDue, UPM,
UStutt, Tilburg

Editors: Andreas Gehlert (UniDue), Andreas Metzger (UniDue)

Reviewers: Michael Parkin (Tilburg)

 Barbara Pernici (POLIMI)

Identifier: Deliverable #CD-JRA-1.3.2

Type: Contractual Deliverable

Version: 1.0

Date: 2008-03-16

Status: Final

Class: External

Management Summary

The aim of this deliverable is two-fold. Firstly, it depicts the research vision of the workpackage,
including the research challenges that will be addressed by the S-Cube consortium. Secondly, the
deliverable aims at defining the S-Cube quality reference model. This reference model is intended to
provide the S-Cube consortium with a unified terminology for describing different quality attributes of
service-based applications. To this end, important quality models from service-oriented computing,
business process management, grid computing and software engineering are analyzed. The quality
attributes which are defined in these models and which are relevant for S-Cube are extracted and
synthesized into the S-Cube quality reference model.

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

 External Final Version 1.0, Dated March 16, 2009 ii

Members of the S-Cube consortium:

University of Duisburg-Essen (Coordinator) Germany
Tilburg University Netherlands
City University London U.K.
Consiglio Nazionale delle Ricerche Italy
Center for Scientific and Technological Research Italy
The French National Institute for Research in Computer Science and Control France
Lero - The Irish Software Engineering Research Centre Ireland
Politecnico di Milano Italy
MTA SZTAKI – Computer and Automation Research Institute Hungary
Vienna University of Technology Austria
Université Claude Bernard Lyon France
University of Crete Greece
Universidad Politécnica de Madrid Spain
University of Stuttgart Germany
University of Hamburg Germany
Vrije Universiteit Amsterdam Netherlands

Published S-Cube documents

All public S-Cube deliverables are available from the S-Cube Web Portal at the following URL:

http://www.s-cube-network.eu/results/deliverables/

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

 External Final Version 1.0, Dated March 16, 2009 iii

The S-Cube Deliverable Series

Vision and Objectives of S-Cube

The Software Services and Systems Network (S-Cube) will establish a unified, multidisciplinary,
vibrant research community which will enable Europe to lead the software-services revolution,
helping shape the software-service based Internet which is the backbone of our future interactive
society.

By integrating diverse research communities, S-Cube intends to achieve world-wide scientific
excellence in a field that is critical for European competitiveness. S-Cube will accomplish its aims by
meeting the following objectives:

• Re-aligning, re-shaping and integrating research agendas of key European players from
diverse research areas and by synthesizing and integrating diversified knowledge, thereby
establishing a long-lasting foundation for steering research and for achieving innovation at the
highest level.

• Inaugurating a Europe-wide common program of education and training for researchers and
industry thereby creating a common culture that will have a profound impact on the future of
the field.

• Establishing a pro-active mobility plan to enable cross-fertilisation and thereby fostering the
integration of research communities and the establishment of a common software services
research culture.

• Establishing trust relationships with industry via European Technology Platforms (specifically
NESSI) to achieve a catalytic effect in shaping European research, strengthening industrial
competitiveness and addressing main societal challenges.

• Defining a broader research vision and perspective that will shape the software-service based
Internet of the future and will accelerate economic growth and improve the living conditions
of European citizens.

S-Cube will produce an integrated research community of international reputation and acclaim that
will help define the future shape of the field of software services which is of critical for European
competitiveness. S-Cube will provide service engineering methodologies which facilitate the
development, deployment and adjustment of sophisticated hybrid service-based systems that cannot be
addressed with today’s limited software engineering approaches. S-Cube will further introduce an
advanced training program for researchers and practitioners. Finally, S-Cube intends to bring strategic
added value to European industry by using industry best-practice models and by implementing
research results into pilot business cases and prototype systems.

S-Cube materials are available from URL: http://www.s-cube-network.eu/

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

Foreword

The aim of this deliverable is two-fold.

• Firstly, it provides a summary of the research vision of the workpackage, including an overview of
research objectives that will be addressed by the S-Cube consortium.

• Secondly, the deliverable aims at defining the S-Cube quality reference model (QRM). This refer-
ence model is intended to provide the S-Cube consortium with a unified terminology for describ-
ing different quality attributes of service-based applications. To this end, important quality models
from service-oriented computing, business process management, grid computing and software en-
gineering are analyzed. The quality attributes which are defined in these models and which are
relevant for S-Cube are extracted and synthesized into the S-Cube quality reference model.

Acknowledgments: The editors would like to thank the team from Politecnico di Milano (especially
Elisabetta di Nitto) for organizing the JRA-1 workshop in Milano and the team from Vrije Universiteit
Amsterdam (especially Patricia Lago) for organizing the workshop of the Integration Committee in Am-
sterdam. Those meetings have provided us with the opportunity to discuss significant elements of the
deliverable. In addition, we thank all S-Cube members who have contributed to this deliverable and es-
pecially Michael Parkin and Barbara Pernici for their helpful and detailed comments on earlier versions
of the document.

External Final Version 1.0, Dated March 16, 2009 1

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

Contents

1 Workpackage Vision 3

2 Building the S-Cube Quality Reference Model 6
2.1 Motivation . 6
2.2 Research Method . 7
2.3 Research Disciplines Involved and their Quality Models 8
2.4 Key Terms Used in the Deliverable . 8

3 Analysis of Existing Quality Models 10
3.1 ISO Software Quality Model (Software Engineering) 10
3.2 UML-Based Quality Models (Software Engineering) 14

3.2.1 UML Profile for Reliability . 14
3.2.2 UML Profile for Schedulability, Performance, and Time Specification (SPT Profile) 16
3.2.3 UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics

and Mechanisms (QoS Profile) . 19
3.3 Statically Inferred QoS Attributes (Software Engineering / SOC) 22
3.4 Design by Contracts Models (Software Engineering / SOC) 24
3.5 Functional Quality in Service Composition (SOC) . 29
3.6 Service Networks and KPIs (BPM) . 32
3.7 Grid Quality Model (Grid Computing) . 35
3.8 Summary . 41

4 The S-Cube Quality Reference Model 43
4.1 Quality Categories of the Model . 43
4.2 Quality Attributes . 46
4.3 Graphical Representation of the Model . 51

5 Conclusions 53

External Final Version 1.0, Dated March 16, 2009 2

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

Chapter 1

Workpackage Vision

As described in S-Cube’s Description of Work (DoW), the general research goal of workpackage WP-
JRA-1.3 is to define novel principles, techniques and methods for defining, negotiating and assuring end-
to-end quality across the functional layers as well as across networks of service providers and consumers.
This chapter provides a summary of the research vision for this workpackage, which refines that general
research goal. To devise this vision, the WP members have analyzed the existing problems and gaps in
the state of the art, which has been surveyed in the initial deliverable of this workpackage [110] as well
as in S-Cube publications [39, 109]. The vision has been jointly defined and agreed on during several
meetings, including – besides others – a JRA-1 research workshop, a meeting of the S-Cube Integration
Committee and and a meeting of the research activity and workpackage leaders.

Motivation

Services are more and more provisioned in the context of short-term, volatile and thus highly dynamic
(business) relationships and (business) processes [110]. Those relationships involve service providers
which are not known during the design time of the service-based application. Thus, different from
traditional software systems, service-based applications require the composition and coordination of
services within highly distributed environments, cutting across the administrative boundaries of various
organizations.

To guarantee the desired end-to-end quality of those service-based applications, contracts between
the service providers and the service requestors (also known as service consumers) on quality aspects
of services have to be established [34]. In general, a contract is a formal agreement between two or
more parties to create mutual business relations or legal obligations. Contracts can have different parts,
such as the definition of business partners, the specification of functional obligations, and quality, price,
and penalties related with the object of the agreement. Workpackage WP-JRA-1.3 in particular focuses
on quality contracts, or more general on those parts of Service Level Agreements (SLAs) which deal
with statements about the services quality levels on which the service requestor and the providers have
reached an agreement. Other aspects of the contracts, such as parties’ identification, legal obligations, or
penalties for contract violation, which are also aspects covered in SLAs or general contracts, will not be
in the focus of this workpackage.

Key Research Objectives

Based on the general life-cycle of electronic contracts [116, 129], three main activities relevant for quality
contracts within service-based applications can be identified: quality definition, quality negotiation and
quality assurance. Within each of these activities, key problems and key research objectives have been
identified. Below, a summary of these research objectives in the context of the quality activities is
provided (see Figure 1.1 for an overview):

External Final Version 1.0, Dated March 16, 2009 3

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

...Definition

...Assurance ...Negotiation

Research Objective:
End-to-End Quality Modelling

Research Objective:
Techniques for Automated and
Proactive Quality Contract
Negotiation and Agreement

Research Objective:
Run-time Quality Prediction
Techniques to Support
Proactive Adaptation

Quality…

Figure 1.1: Activities relevant for quality of service-based applications and key research objectives of
workpackage

• Quality definition: In electronic contracting, the contract definition activity concerns the establish-
ment of a model or language for the definition of contract terms, which is understood and shared
by the contracting parties. This model or language then is used to instantiate an actual contract
(e.g., a SLA) that reflects the domain dependent interests of providers and consumers.

For what concerns establishing end-to-end quality, we currently miss an understanding on how
to aggregate quality levels stipulated in individual quality contracts (e.g., as part of SLAs) across
layers and across networks of service providers and consumers. As a first step to address this prob-
lem, this workpackage aims at defining a comprehensive and integrated quality reference model,
including quality attributes which are relevant at the different layers of a service-based application.
To this end, the quality reference model incorporates and aligns the quality attributes relevant for
WP-JRA-2.1 (BPM), WP-JRA-2.2 (service composition) and WP-JRA-2.3 (service infrastructure)
as well as quality attributes relevant for software engineering.

As a second step to address the problem of establishing end-to-end quality, this workpackage
sets out to devise an extensible and rich quality definition language. As existing languages for
quality definition offer limited capabilities for automated negotiation and quality-aware service
composition, this language will provide means to precisely express different levels of quality as
well as their dependencies. The quality definition language will be based on the quality attributes
as identified in the quality reference model.

Together, the quality reference model and the quality definition language will enable the mod-
elling of end-to-end quality for service-based applications. The model and language thus integrate
knowledge from the S-Cube disciplines business process management, service-oriented comput-
ing, grid computing and software engineering such that this knowledge can be exploited for end-
to-end quality definition, negotiation and assurance. As an example, based on layer-specific moni-
toring data (see WP-JRA-1.2 and WP-JRA-2.1 – WP-JRA-2.3), techniques will be devised, which
allow aggregating those isolated quality levels into end-to-end quality levels that can be checked
against end-to-end quality requirements.

Besides others, the quality reference model and the quality definition language serve as input for
requirements engineering techniques in WP-JRA-1.1 and monitoring techniques and mechanisms
in WP-JRA-1.2. Work on end-to-end quality modelling is pursued in task T-JRA-1.3.1 ’Quality
Reference Model for Service-based Applications’, as well as in task T-JRA-1.3.2 ’Specifying and
Negotiating End-to-End Quality and SLAs’.

• Quality negotiation: Establishment of an electronic contract concerns the set of tasks required
for defining an actual contract (e.g., SLA) based on the model or language for the definition of
contract terms (see above). This may involve the selection of the service provider (the contract

External Final Version 1.0, Dated March 16, 2009 4

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

partner) among a set of potential providers, the negotiation of the contract terms between the
selected provider and the service consumer, and the agreement to the contract terms.

Automatic quality negotiation and agreement become important as, in dynamic service settings,
more and more decisions must be taken by the service-based application during run-time. In
addition, proactive negotiation and agreement is a key prerequisite for effective run-time quality
contract negotiation, since negotiation does imply significant computational costs. Proactive nego-
tiation is based on predicting the need for (re-)negotiation during run-time. Thus, this workpackage
focuses on novel quality negotiation and agreement techniques for automatically and proactively
establishing contracts on quality attributes.

Exploiting codified human computer interaction and context knowledge will be key to supporting
the envisioned quality negotiation techniques. As an example, we plan to exploit user and task
models from WP-JRA-1.1, which codify (i.e., make machine-accessible) user preferences and
characteristics, to devise service negotiators that perform the negotiation process on behalf of the
service consumers and providers. For pro-active negotiation, we expect synergies with the quality
prediction techniques for pro-active adaptation (see below). Work on automated and proactive
quality negotiation is pursued in task T-JRA-1.3.2 ’Specifying and Negotiating End-to-End Quality
and SLAs’.

• Quality assurance: Contract enactment in electronic contracting concerns tasks for assuring the
satisfaction of the contracts. In the case of quality contracts, this implies assuring that the quality
levels negotiated and agreed between the service provider and the service requestor are met.

Currently, assuring that contracts are met is typically performed by monitoring the service-based
application. If a deviation is observed, the application then is (reactively) adapted. However,
proactive adaptation would offer significant benefits compared to such a reactive adaptation (like
not having to compensate for the deviation). Unfortunately, currently we are lacking quality assur-
ance techniques for predicting quality levels and thus triggering proactive adaptation. Thus, this
workpackage will elaborate novel run-time techniques for predicting quality attributes. These will
be contributed to WP-JRA-1.2 as a key means to support pro-active adaptation of service-based
applications. In addition, if quality assurance has uncovered a contract violation, this could also
mean that the contracts have to be re-negotiated (see above).

Local quality assurance mechanisms and techniques of the individual layers (i.e., from WP-JRA-
2.1, WP-JRA-2.3 and WP-JRA-2.3) as well as techniques from software engineering constitute
building-blocks and input for the novel quality assurance techniques devised in this workpack-
age. Specifically, these techniques will be augmented with run-time information, such that these
become applicable during the operation of a service-based application. As examples, we will in-
vestigate how existing testing or model analysis techniques have to be extended such that these can
be exploited during the operation of the service-based application. Based on these techniques,we
will devise prediction techniques for quality attributes to enable pro-active adaptation. For in-
stance, correctness or performance could be predicted by building on techniques similar to online
testing [59] or run-time model analysis [49]. Work on run-time quality prediction is pursued in task
T-JRA-1.3.3 ’Assuring and Monitoring End-to-End Quality Provision and SLA Conformance’

Summarizing, WP-JRA-1.3 will pursue integrative and innovative research to devise novel principles,
techniques and methods for defining, negotiating and assuring end-to-end quality across the functional
layers as well as across networks of service providers and consumers.

External Final Version 1.0, Dated March 16, 2009 5

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

Chapter 2

Building the S-Cube Quality Reference
Model

2.1 Motivation

As has been discussed in the previous Chapter, the dynamic agreement of quality contracts and the
assurance of those quality contracts becomes a key issue in service-based applications. This not only
requires that quality aspects are negotiated and agreed, but also that those are assured during run-time in
order to determine whether there is a need for adapting the service-based application or for re-negotiating
the quality contracts.

As a prerequisite to quality negotiation and assurance, quality attributes, quality levels and values
need to be specified and documented. As summarized above, this requires an integrated and consolidated
view across all layers of a service-based application as well as across the chain / network of service
providers and consumers. In a service-based application, different kinds of quality attributes (aka. quality
characteristics or quality properties) need to be considered and are relevant at the different layers of the
service-based application.

As observed in [110, 39, 109], we currently lack techniques and methods that address those quality
attributes in a comprehensive and cross-cutting fashion across all layers of a service-based application
and integrating all phases of quality contract definition, negotiation, assurance and refinement. In addi-
tion, only few approaches consider the context of a service-based application and its impact on quality.

Due to the dynamism of the environment in which service-based applications operate, techniques are
needed to aggregate individual quality levels of the services involved in a service composition (or even
service-based application) in order to determine and thus assure the end-to-end quality during run-time.
This aggregation will typically span different layers of a service-based application and thus a common
understanding within and across these layers on what the different quality attributes mean is needed.

To this end, this deliverable sets out to identify relevant quality attributes at the various layers and
defined by the different S-Cube research communities (Service-oriented Computing (SOC), Software
Engineering (SE), Business Process Management (BPM) and Grid Computing), and to consolidate these
into the S-Cube Quality Reference Model (QRM). The S-Cube quality reference model will provide an
understanding of which quality attributes are relevant, how they are defined as well as how they relate to
each other. Thereby, this quality model explicitly documents and consolidates and aligns the knowledge
of the diverse research disciplines in form of a quality taxonomy.

The S-Cube Quality Reference Model will serve as a foundation for further work in this workpack-
age. As an example, the forthcoming deliverable CD-JRA-1.3.3 ’Initial concepts for specifying end-to-
end quality characteristics and negotiating SLAs’ will set out to define a quality definition language to
be used during quality negotiation and assurance. In addition, the quality model will serve as a refer-
ence for other S-Cube workpackages; e.g., the quality attributes and their definitions are provided to the
S-Cube Knowledge Model (WP-IA-1.1) and the quality reference model will serve as input for require-

External Final Version 1.0, Dated March 16, 2009 6

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

ments engineering techniques and processes in WP-JRA-1.1, as well as for monitoring techniques and
mechanisms in WP-JRA-1.2.

2.2 Research Method

The S-Cube quality reference model as presented in this deliverable has been developed in three major
phases:

1. Data collection: Each workpackage partner was asked to select the most important quality models
(including potential SLA constituents) in his field and to describe these quality models. One
main selection criterion for these quality models was the widespread use of the quality models in
academia and industry. Evidence for this usage could be provided by, for example, standardization,
importance for stating quality aspects of SLAs, relevant industrial use cases, or by being published
in highly ranked publications.

Chapter 3 describes the relevant quality models coming from the different S-Cube research disci-
plines (see Section 2.3 for an overview). The quality models analysed have been described with
respect to the following four major aspects, according to which each quality model description has
been structured:

• Introduction: This aspect provides the motivation and sketches the usage of the respective
quality model.

• Description of the Model: This aspect describes the quality model in more detail, and espe-
cially includes a list of quality attributes (terms and definitions) together with the context in
which they are defined.

• Proposed Structure of the Quality Attributes: If applicable, this aspect explains the structure
of the quality attributes as proposed by the respective quality model.

• Relevance for S-Cube This aspect discussed the potential relevance of each particular quality
model for quality definition, negotiation and assurance respectively.

2. Quality attributes analysis: The aim of this analysis phase is to identify from the lists of quality
attributes described in phase 1 (Data collection) those quality attributes that are relevant for ser-
vices and service-based applications. In addition, synonyms and homonyms in quality attributes
coming from different S-Cube research areas and disciplines are identified and resolved.

3. Consolidating the quality models: The last phase aimed at consolidating the various quality mod-
els. To this end, two kinds of inputs have been taken into account: Firstly, the quality models de-
scribed in the data collection phase, and secondly, the relevant quality attributes provided in phase
2 (quality attributes analysis). Specifically, quality attributes associated with context and HCI fac-
tors, such as usability, accessibility and system-level performance, were taken into account and
were related with quality attributes intrinsic to individual services, such as accuracy, availability
and performance. As a result of this step, the S-Cube Quality Reference Model (QRM) has been
constructed.

Chapter 4 describes the S-Cube QRM by providing a classification of the relevant quality attributes
into quality categories, defining the individual quality attributes and providing a taxonomy of these
quality categories and attributes (in the form of a graphical representation).

Notes: According to our initial planning (in the Description of Work), it was planned to take into
account the body of knowledge on SLAs in the telecommunications field. However, at this stage in the
project, it was considered to be important to integrate the body of knowledge of the four key research

External Final Version 1.0, Dated March 16, 2009 7

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

disciplines of S-Cube first, i.e. to align the understanding of quality attributes in software engineering,
business process management, service-oriented computing and grid computing.

In addition, parts of this deliverable were intended to analyse SLA properties and situations to be
monitored and to provide a taxonomy of requirements for monitorability in SLA. In order to better align
the work in WP-JRA-1.3 with that in WP-JRA-1.2, it was agreed to discuss that taxonomy together with
the more comprehensive taxonomy of adaptation and monitoring in deliverable CD-JRA-1.2.2 ”Taxon-
omy of adaptation principles and mechanisms”.

2.3 Research Disciplines Involved and their Quality Models

The S-Cube QRM synthesizes the body of knowledge on quality modelling of the different S-Cube
research disciplines (see Chapter 3 for more details). The body of knowledge of the following disciplines
has been considered:

• Software Engineering: As a model, which covers general software quality aspects, the ISO soft-
ware quality model is considered in Section 3.1. More concrete and detailed models used in
software engineering are UML-based quality models, which are discussed in Section 3.2. These
quality models were selected because the UML is the de-facto standard in the software engineering
discipline and it is, therefore, expected that the quality models associated with this standard will
be widely recognized and used.

• Software Engineering / Service-oriented Computing: A very specific look at quality attributes rel-
evant in software engineering is provided in Section 3.3 by examining QoS attributes that can be
statically inferred from development artifacts. Those attributes are relevant for both traditional
software as well as for service implementations and thus also cover the SOC discipline. Addition-
ally design by contract models are examined in Section 3.4 as quality models which are relevant
both for software engineering and service-oriented computing.

• Service-oriented Computing: As specific quality models in SOC, functional quality of service
composition models are analyzed in Section 3.5.

• Business Process Management: Section 3.6 covers BPM-related quality models for service net-
works including key performance indicators (KPIs).

• Grid computing: Quality models used in Grid computing are covered in Section 3.7.

2.4 Key Terms Used in the Deliverable

Table 2.1 provides the definition for key, generic terms used throughout the deliverable. A detailed list
of quality attributes can be found as part of the description of the S-Cube QRM in Section 4.

Term Definition

Quality Quality is the degree to which a set of characteristics described as quality at-
tribute fulfills a set of requirements. At least three different views on quality
can be distinguished: process quality, product quality and quality in use

Process Quality Process quality is the quality of the production process of a product.
Product Quality Product quality refers to the degree to which a product fulfills its require-

ments.
Quality in Use The quality of a product evaluated in specific usage contexts and for specific

tasks.
Quality Model A quality model is a model, which structures a set of quality attributes.

External Final Version 1.0, Dated March 16, 2009 8

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

Term Definition

Quality Attribute A quality attribute is used to describe some aspect of quality. The term qual-
ity characteristic is used synonymously.

Quality Characteristic See Quality attribute.

External Final Version 1.0, Dated March 16, 2009 9

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

Chapter 3

Analysis of Existing Quality Models

3.1 ISO Software Quality Model (Software Engineering)

ISO-9126 “Software Engineering – Product Quality” [70] is an international standard for measuring
and evaluating software quality. The ISO-9126 quality model was chosen because it is the standard for
documenting and assuring software quality and has gained practical and theoretical importance in the
software engineering fields.

The model consists of four parts (quality model, external metrics, internal metrics and quality in use
metrics). For the purpose of this deliverable we will investigate part one, which is a quality model that
includes quality characteristics. The quality model is embedded in a framework describing the following
four aspects of software quality:

• process quality: quality of the production process of a product.

• internal (product) quality: degree to which a product fulfils the requirements of the developers.

• external (product) quality: degree to which a product fulfils the requirements of the users.

• quality in use: product quality evaluated in specific usage contexts and for specific tasks.

The relationship of these quality aspects is depicted in Figure 3.1.

Process
Quality

Internal
Quality

Attributes

External
Quality

Attributes

depends on

influences

External
“Product”

Quality

External
“Product”

Quality

Quality in
Use

Attributes

influencesinfluences

depends on depends on

process software product effect of software
product

Figure 3.1: Quality Model Framework [70]

The model is intended to be used for [70, p. 1]:

• validating the completeness of a requirements definition,

• identifying software requirements,

• identifying software design objectives,

External Final Version 1.0, Dated March 16, 2009 10

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

• identifying software testing objectives,

• identifying quality assurance criteria,

• identifying acceptance criteria for a completed software product.

Description of the Model

The quality model described in ISO-9126 has two parts. The first part covers internal and external
quality describing six main quality attributes and their sub-attributes. The six main quality attributes are
[70, p. 7]:

• Functionality: Functionality is the capability of the software product to provide functions which
meet stated and implied needs when the software is used under specified conditions.

• Reliability: Reliability is the capability of the software product to maintain a specified level of
performance when used under specified conditions.

• Usability: Usability is the capability of the software product to be understood, learned, used and
attractive to the user, when used under specified conditions.

• Efficiency: Efficiency is the capability of the software product to provide appropriate performance,
relative to the amount of resources used, under stated conditions.

• Maintainability: Maintainability is the capability of the software product to be modified. Modifi-
cations may include corrections, improvements or adaptation of the software to changes in envi-
ronment, and in requirements and functional specifications.

• Portability: Portability is the capability of the software product to be transferred from one envi-
ronment to another.

The second part of the document specifies four quality attributes for the quality in use aspect. These
attributes are [70, p. 12]:

• Effectiveness: The effectiveness of a software product describes its capability to enable the user to
achieve his or her gaols accurately and completely.

• Productivity: The productivity of a software product describes its capability to enable the user to
expend an appropriate amount of resources to achieve a given effectiveness.

• Safety: Safety is the capability of a software product to achieve an acceptable level of risk to harm
people, businesses, other software products or the environment.

• Satisfaction Satisfaction is the capability of a software product to satisfy users.

All quality attributes are summarised in Tables 3.1 and 3.2.

Context Quality Attribute Definition

Functionality Suitability Provide an appropriate set of functions for specified tasks and user ob-
jectives.

Accuracy Provide the right or agreed results or effects with the needed degree of
precision.

Interoperability Interact with one or more specified systems.
Security Protect information and data so that unauthorised persons or systems

cannot read or modify them and authorised persons or systems are not
denied access to them.

External Final Version 1.0, Dated March 16, 2009 11

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

Context Quality Attribute Definition

Functionality
compliance

Adhere to standards, conventions or regulations in laws and similar pre-
scriptions relating to functionality.

Reliability Maturity Avoid failure as a result of faults in the software.
Fault toler-
ance

Maintain a specified level of performance in cases of software faults or
of infringement of specified interfaces.

Recoverability Re-establish a specified level of performance and recover the data di-
rectly affected in the case of a failure.

Reliability
compliance

Adhere to standards, conventions or regulations relating to reliability.

Usability Understandability Enable the user to understand whether the software is suitable, and how
it can be used for particular tasks and conditions of use.

Learnability Enable the user to learn the software’s application.
Operability Enable the user to operate and control the software.
Attractiveness Be attractive to the user.
Usability
compliance

Adhere to standards, conventions, style guides or regulations relating
to usability.

Efficiency Time be-
haviour

Provide appropriate response and processing times and throughput rates
when performing the function, under stated conditions.

Resource util-
isation

Use appropriate amounts and types of resources when the software per-
forms its function under stated conditions.

Efficiency
compliance

Adhere to standards or conventions relating to effiency.

Maintainability Analysability Be diagnosed for defiencies or causes of failures in the software, of for
the parts to be modified to be identified.

Changeability Enable a specified modification to be implemented.
Stability Avoid unexpected effects from modifications of the software.
Testability Enable modified software to be validated.
Maintainability
compliance

Adhere to standards or conventions relating to maintainability.

Portability Adaptability Be adapted for different specified environments without applying ac-
tions or means other than those provided for this purpose for the soft-
ware considered.

Installability Be installed in a specific environment.
Co-existence Co-exist with other independent software in a common environment

sharing common resources.
Replaceability Be used in place of another specified software product for the same

purpose in the same environment.
Portability
compliance

Adhere to standards or conventions relating to portability.

Table 3.1: Quality characteristics for external and internal software qual-
ities in ISO-9126 [70, p. 7–11)]

Proposed Structure of the Quality Attributes

The quality attributes of the ISO-9126 standard are organised in a tree (as shown in Figure 3.2 on
page 13). Further interactions of the quality attributes are not specified by the standard.

External Final Version 1.0, Dated March 16, 2009 12

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

Context Quality Attribute Definition

Quality in use Effectiveness Enable users to achieve specified goals with accuracy and completeness
in a specified context of use.

Productivity Enable users to expend appropriate amounts of resources in relation to
the effectiveness achieved in a specified context of use.

Safety Achieve acceptable levels of risk of harm to people, business, software,
property or the environment in a specified context of use.

Satisfaction Satisfy users in a specified context of use.

Table 3.2: Characteristics for Quality in Use in ISO-9126 [70, p. 12–13]

Software Quality

External and
Internal quality

Quality in use

usability efficiency maintainabilityreliabilityfunctionality portability

productivity

safety

effectiveness

satisfaction

suitability

accuracy

interoperability

security

functionality
compliance

understandability

operability

learnability

attractiveness

usability
compliance

maturity

recoverability

fault tolerance

reliability
compliance

time
behaviour

resource
utilisation

efficiency
compliance

analysability

testability

changeability

maintainability
compliance

stability

adaptability

replaceability

installability

portability
compliance

co-existence

Figure 3.2: Structure of Quality Model and Quality Attributes Based on [70]

Relevance for S-Cube

The ISO standard is relevant for S-Cube as it defines different views on software quality as well as key
quality attributes of software systems. The main use of the standard is for identifying important quality
attributes and, therefore, initiating the quality assurance for software. The remaining parts of the standard
also specify metrics how the quality attributes should be measured (see also Table 3.3).

Goal Relevance Rationale/Explanation

Quality Definition + The main focus of this quality model is to provide means for defining qual-
ity attributes for software systems.

Quality Negotiation - There are no techniques to negotiate quality.
Quality Assurance o Specification of metrics to measure quality attributes.

Discipline(s) Software Engineering

Table 3.3: Potential Relevance of the ISO Standard for the Goals of WP-JRA-1.3 (+ = fully relevant, o =
partially relevant, - = not relevant)

External Final Version 1.0, Dated March 16, 2009 13

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

3.2 UML-Based Quality Models (Software Engineering)

As the Unified Modelling Language (UML) is the de-facto standard for modelling software systems, we
investigate quality models related to the UML in this section. Documenting quality characteristics in
UML is mainly achieved by different UML profiles. In the following we discuss the documentation of
quality characteristics in standard UML, the UML profile for reliability (Section 3.2.1), the UML Profile
for Schedulability, Performance, and Time Specification (SPT; Section 3.2.2) and the UML Quality of
Service profile (Section 3.2.3). Some UML profiles such as the Quality of Service Modelling language
[46, 47] and the UML Testing Profile [101] define a language extension to describe quality attributes in
the UML. Since we are interested in concrete quality models and not in languages for specifying quality
here, we exclude these profiles from our analysis.

Quality attributes, especially time constraints can be modelled in standard UML [103, 99]. For
example, timing and sequence diagrams allows to model concrete points in time and durations and to
express constraints on those timing characteristics. In addition, interaction diagrams also allows to model
constraints for durations. Consequently, it is possible to express requirements for the timing behaviour
of software systems in standard UML. Figure 3.3 for instance shows a sequence diagram with concrete
points in time (TimeObservation) together with their constraints (TimeConstraint) as well as durations
(DurationObservation) together with their constraints (DurationConstraint).

Figure 3.3: Example of a Sequence Diagram with Time Specifications

Thus, one important quality characteristic can be expressed in standard UML. Other characteristics
such as reliability and availability are added to the UML via specific profiles described below.

3.2.1 UML Profile for Reliability

Cortellessa and Pompei propose a UML profile for Reliability [33] that was later integrated in a UML
profile for quality of services (see Section 3.2.3). The authors’ indention in developing this profile was
to support software developers using commercial of the shelf components. The profile provides means to
predict the reliability of the entire system based on the individual reliabilities of the system’s components.

Description of the Model

Cortellessa and Pompei define a conceptual model of reliability clarifying how reliability can be de-
scribed (see Figure 3.4) and show how this conceptual model can be implemented in UML.

The conceptual model consists of the classes REservice, REuser, REcomponent, REhost
and REconnector. The prefix RE stands for reliability. In the view of the authors each REservice
consists of REcomoponents, which interact with each other with the help of REconnectors. A
REconnector is a logical connection between two REcomponents. Each REcomponent can then
be decomposed hierarchically and is executed at one REhost. Each REhost however can run more

External Final Version 1.0, Dated March 16, 2009 14

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

REuser

REconnector

REservice

REhost

REcomponent

1

1
1..*

1..*

1..*

1

0..1

1..*

1..*

1

2

0..*
2

Figure 3.4: Proposed Conceptual Model for Reliability [33, p. 199]

than one REcomponent. In addition to its logical connection, a REconnector can also be used to
model the physical connection between two REhosts. A REservice defines an interaction of one or
more REcomponents and is always triggered by a REuser.

The relation of this conceptual model to the UML is twofold: Firstly the classes of the conceptual
model are derived by sub-classing from existing UML classes [33, p. 200]. In addition the conceptual
model is extended by stereotypes. The tagged values associated with these stereotypes represent the
quality attributes associated with each stereotype. The tagged values are listed in Table 3.4.

Context Quality Attribute Definition

REComponent REcompfailprob Atomic failure probability of the component.
REbp Number of invocations on the component (busy periods).

REConnector REconfailprob Atomic failure probability of the connector.
REnummsg Number of invocations of the connector (number of messages).

REUser REaccessprob Probability that a user of a certain type accesses the system.
REserviceprob Probability that a user uses a certain service.

REService REprob Probability that a service is required.

REhost REindexHost Names of the hosts to which the host describe is physically connected.

Table 3.4: Tagged Values of the Reliability Concepts

Relevance for S-Cube

By defining the above-mentioned tagged values it is then possible to calculate the probability of the
failure of a service FP (S) by applying the following formula:

FP (S) =
∑

j = 1..K(
∏

i = 1..N(1−REcompfailprob(i))REbp(i,j) ∗∏
(∀(l, i))(1−REconnfailprob(l, i))REnummsg(l,i,j)).

Although the UML extension proposed by Cortellessa and Pompei provides a rigorous way to cal-
culate the failure probability of the entire software system, it is limited to those quality characteristics
regarding the reliability of a software system. In addition, it mostly concentrates on probabilities, which
can easily be used for calculations. Other reliability parameters, however, are not addressed (see also
Table 3.5).

External Final Version 1.0, Dated March 16, 2009 15

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

Goal Relevance Rationale/Explanation

Quality Definition o The main focus of this quality model is to provide means for describing
the reliability of software systems.

Quality Negotiation - There are no techniques to negotiate quality.
Quality Assurance o The analyses methods provided allows to calculate the failure probability

of a single service.

Discipline(s) Software Engineering

Table 3.5: Potential Relevance of the Reliability Profile for the Goals of WP-JRA-1.3 (+ = fully relevant,
o = partially relevant, - = not relevant)

3.2.2 UML Profile for Schedulability, Performance, and Time Specification (SPT Profile)

The UML Profile for Schedulability, Performance, and Time Specification (SPT-profile) [100] produced
by the OMG is an extension of the UML to cover performance aspects. It resembles various proposals
to model performance in the UML, which were put forward e.g. by Williams and Smith 2002 in [130],
Dimitrov et al. in [40], Bertolino et al. [15] and Gu and Petriu in [56]. It was designed to model real time
characteristics of software systems in UML in a precise way to enable analysing the performance of the
software system prior to its implementation.

The three roles defined in the model are modellers, model analysis method providers and infrastruc-
ture providers. Each of these roles is described below:

1. Modeller: The main focus is on the modeller who uses the SPT profile to model performance
characteristics of a software system and uses these characteristics to predict if the system satisfies
the performance requirements.

2. Model analysis method provider: The model analysis method providers are the teams who provide
concrete techniques and/or tools to predict the performance of the software system described by
the SPT profile.

3. Infrastructure Provider: The infrastructure provider are those persons who provide run-time tech-
nologies such as Real-Time CORBA to which the performance characteristics in the SPT profile
should be related for precise performance predictions.

The SPT-profile is described in nine sections. Two of the sections relate to quality attributes of
interest to S-Cube: in Section 4 time modelling is described and Section 7 describes performance mod-
elling. The modelling of time was described in Section 3.2, the remainder of this section concentrates on
performance modelling.

Description of the Model

An example of an SPT annotated UML model is given in Figure 3.5. The example depicts for instance
that the response time of the first activity of the Browser object, i. e. the time between resource request
and resource release, should be less than 500ms in 95 % of the cases. In addition, the first step of the
VideoServer object has an estimated demand on its host resource of 1ms. In a similar fassion the
first activity of the VideoPlayer object has an estimated average deoman on its host reosurce of 15ms
with an allowed standard deviation of this value of at most 10ms.

The SPT profile provides means to [100, p. 7-1]:

1. describe performance requirements in software designs,

2. associate quality attributes (called quality characteristics in the profile definition) with UML ele-
ments,

External Final Version 1.0, Dated March 16, 2009 16

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

b : Browser ws : WebServer vs : VideoServer vp : VideoPlayer vw : VideoWindow

processSelection

initialPlayout initializePlayer

sendFrame

showFrame

terminalPlayout

confirm

*[$N]

«PAclosedLoad»
{PApopulation=$NUsers,
PAextDelay=('mean','asgn',20,'ms')}}

«PAstep»
{PArespTime=
('req','percentile',95,500,'ms')}}

«PAstep»
{PAdemand=
('est','mean',1,'ms')}}

«PAstep»
{PAdemand=
(('est','mean',15,'ms'),
('est','sigma',10))}

«PAstep»
{PArep=$N,
PAdemand=('est','mean',10,'ms'),
PAextOp=('filesys',12),('network',65)}

«PAstep»
{PAinterval=
('req','percentile',99,30,'ms')}}

Figure 3.5: Example of a SPT annotated UML Model [100, p. 7–28]

3. specify execution parameters used to compute and predict the performance of the software system
and

4. represent predicted performance results in modelling tools.

Figure 3.6 presents the conceptual model, which defines the SPT’s concepts to describe performance
attributes of software systems (labelled performance analysis domain model in [100]). The central ele-
ment in the model is the PerformanceContext. It specifies some scenarios that define the context
in which the performance of the software system should be evaluated. Each scenario is defined as a
sequence of steps (PStep) representing a single activity of the system.

ClosedWorkload
population
externalDelay

OpenWorkload
oc currencePat tern

PPassiveRes
ource

waitingTime
responseTime
capacity
accessTime

{ordered}

PerformanceContext

Work load
responseTime
priority

1..*

1

1..*

1

PResource
uti lizat ion
schedul ingPolicy
throughput

1..*

0..*

1..*

0..*

/

PScenario
hostExecutionDemand
responseTime

1..*

1

1..*

1

11..* 0..*

0..* +resource

0..*

0..*

PProcessingResou
rce

processingRate
contextSwitchTime
priorityRange
isPreemptible

0..1

0..*

+host 0..1

0..*

<<deploys>>

PStep
probabil it y
repet it ion
delay
operat ions
interval
execut ionTim e

1

1

+root 1

1

1..*1..*

0..*

0..*

+successor

0..*

+predecessor 0..*/

Figure 3.6: Performance Analysis Domain Model [100, p. 7-5]

External Final Version 1.0, Dated March 16, 2009 17

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

Each scenario uses resources (PResource) and is executed under a certain workload (Workload).
The resources are distinguished in passive and active resources (PPassiveResource and PPro-
cessingResource). The workload is further distinguished into open and closed workloads (Open-
Workload and ClosedWorkload). The distinction between open and closed workloads is that open
workloads are based on a probability distribution of system usage while closed workloads describe a
concrete system usage (e.g., 10 users use the system each 10 minutes for 1 minute).

Quality attributes are defined as attributes of the conceptual model’s classes, which are subsequently
mapped to tagged values of the classes’ stereotypes, which make up the SPT-Profile. The attributes are
explained in Table 3.6.

Context Quality Attribute Description/Definition

Scenario hostExecutionDemand execution demand of the scenario on its hosts in case that every
step in the scenario is executed on the same host.

responseTime time to execute the scenario

Step hostExecutionDemand execution demand of the step on its host resource
delay delay of the step, e.g.due to a user interaction
responseTime delay to execute this step
probability probability to execute this step in case of a fork in the workflow
interval time between the execution of this step
repetition number of times the step is repeated
operations used to express operations on the resource, which is not ex-

plicitly modelled

Resource utilization computed amount of resource utilisation calculated based on
the entire model

throughput rate at which the resource performs its function
schedulingPriority policy to control access to resource

ProcessingResource schedulingPolicy see resource. pre-defined policies are: FIFO, HeadOfLine,
PreemtResource, ProcSharing, PrioProcSharing, LIFO

processingRate speed factor for the processor
contextSwitchTime time required to switch from one scenario to another
priorityRange set of priorities for the processor
isPreemptable shows whether the processor is preemtable

PassiveResource schedulingPriority see resource. pre-defined policies are: FIFO, PriorityInheri-
tance, NoPreemption, HighestLockers, PriorityCeiling

capacity number of concurrent users
accessTime time to acquire and releasing resource
utilization mean number of concurrent users
responseTime time between the resource request and resource release
waitingTime time between access request and granted access

Workload responseTime time between start and end of a scenario
priority priority of the workload

OpenWorkload occurrencePattern pattern to describe the interarrivel times between consecutive
instances

ClosedWorkload population number of system users
externalDelay time between the response and the subsequent request

Table 3.6: List Quality Attributes in SPT [100, p. 7-7](Context = attribute’s class)

External Final Version 1.0, Dated March 16, 2009 18

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

Relevance for S-Cube

The SPT profile is relevant to S-Cube as it defines key quality attributes of software systems. SPT models
can be used to analyse performance characteristics and therefore used as means of quality assurance (see
also Table 3.7 on page 19).

Goal Relevance Rationale/Explanation

Quality Definition + The main focus of this quality model is to provide means for defining qual-
ity attributes for software systems.

Quality Negotiation - There are no techniques to negotiate quality.
Quality Assurance + The analyses methods enabled by the SPT profile allows to predict the per-

formance of a software system and, thereby, assure its performance quality
attribute.

Discipline(s) Software Engineering

Table 3.7: Potential Relevance of the SPT Profile for the Goals of WP-JRA-1.3 (+ = fully relevant, o =
partially relevant, - = not relevant)

3.2.3 UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics
and Mechanisms (QoS Profile)

Many proposals were put forward to model quality attributes with the Unified Modelling Language in
response to the Object Management Group’s (OMG) request for proposals for developing a UML quality
of service (QoS) profile to specify Service and Fault Tolerance Characteristics and Mechanisms (UML
QoS profile) [2, 35, 7]. Especially the work described in [7] was mainly adopted in the UML QoS Profile
issued by the OMG in 2006 [102]. The QoS profile is primarily an approach to describe how quality
should be defined. However, the profile comes with proposals for concrete quality attributes on which
we focus here.

The UML QoS profile provides a unified framework for specifying quality attributes in UML models.
Annotating UML models with quality attributes is described as a three step process [14, 43]:

1. The UML QoS Profile provides a catalogue of quality characteristics. This catalogue must be
tailored to the project at hand.

2. The tailored catalogue of quality characteristics is then used to derive a project-specific quality
model.

3. This project-specific quality model is in turn used to annotate UML models.

Description of the Model

The document describing the UML QoS profile is organised in 14 sections. The most relevant sections
for our purposes are: Section 8 containing a coarse-grained description of the QoS quality modelling
language and Section 10, which contains the catalogue of QoS characteristics deemed relevant by the
OMG.

The QoS Characteristics model depicted in Figure 3.7 distinguishes between quality characteristics
(QoSCharacteristic), quality dimensions (QoSDimension) and quality parameters (QoSpara-
meter). Quality characteristics are used to represent quantifiable properties of services, which “. . . are
specified independently of the elements that they qualify.” [102, p. 10] Consequently, quality charac-
teristics are defined independently of any UML model and will be associated with these UML models
via annotations. QoSCharacteristics are used to describe general non-functional properties (e.g.,
latency), which can be specialised and tailored for a concrete project.

External Final Version 1.0, Dated March 16, 2009 19

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

<<metaclass>>
QoSCharacteristic

<<metaclass>>
QoSDimension

<<metaclass>>
QoSParameter

<<metaclass>>
QoSCategory

Ownes
0..1Owner

*

Type

statisticalQualifier : QoSStatisticalAttribute

Typed

Type

Parent

isInvariant : boolean

GroupedIn

0..1

Groupes

*

Quantifier1..*

DimensionOf1

*

0..1

*
Template

1
Derivations Sub * *

Parameter

1 *

direction : DirectionKind
unit : string

Figure 3.7: QoSCharacteristics Model [102, p. 11]

While QoSCharacteristics describe what should be measured, QoSDimensions describe
how a single criterion should be measured. QoSDimensions, therefore, specialise QoSCharacte-
ristics. The quality characteristic reliability for instance may be refined by the dimensions time to
repair and time to failure e.g., [74, 47, 46].

The general quality attributes provided by the OMG in Section 10 of the document are listed in
Table 3.8 on page 21 [102, p. 31]. Because of the general nature of the QoS profile the quality attributes
do not depend on a particular context. Consequently, the context column is omitted here.

Quality Attribute Definition

Performance Performance describes the timeliness aspects of the software systems behaviour. It, there-
fore, includes quality attributes such as latency, throughput and turn-around. Performance
may also be used to describe the utilisation of resources in order to provide a particu-
lar service (e.g.memory and CPU usage). The latter performance aspects are refined by
efficiency and demand.

Throughput Throughput refers to the number of event responses handled during an interval. Througput
can be further distinguished into input-data-throughput (arrivalal rate of user data in the
input channel), communication throughput (user data output to a channel) and processing
throughput (amount of data processed).

Latency Latency refers to a time interval during which a response to an event must arrive.
Turn-around The turn-around specifies the absolute time limit required in fulfilling a job, task or service

(e.g.the worst case scenario).
Efficiency The efficiency is the capability of the software to produce their results with the minimum

resource consumption.
Demand Demand specifies how much a resource or a service is needed.

Dependability Dependability covers all properties of a software system to assure that it delivers a certain
service reliably. Conseuqently, the dependability quality attribute covers other quality
attributes such as availability, reliability, fault-tolerance, recoverability and maturity.

Availability Availability describes the ability of a software system to constantly provide certain ser-
vices. It can be further refined by the mean time between failure and the time needed
to recover from a fault. Availability further subdivided into connection-availability and
processing availability.

Reliability The capability of the software product to maintain a specified level of performance when
used under specified conditions.

External Final Version 1.0, Dated March 16, 2009 20

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

Fault-tolerance A fault tolreant software systems contains mechanisms to detect and correct latent errors
before they become effective.

Recoverability Recoverability of a software product is the ability to recover affected data in caise of a
failure.

Maturity Maturity is the capability of a software system to avoid faulres as a result of faults.

Security Security covers the capability of a software system to protect entities (e.g.data) and to
protect the access to resources (e.g.printers). Security can be refined to access-control and
protection.

Access control Access-control specifies the control policy used for the access to services (e.g.security
levels).

Protection Protection describes more generally the methods used to grant access to a service and the
probability of a control break.

Accuracy Accuracy describes the maximum allowed distance between the expected and the deliv-
ered results.

Coherence Coherence includes characteristics about concurrent and temporal consistency of data and
software elements.

Table 3.8: General Quality Attributes Defined by the OMG [102, p. 31]

Proposed Structure of the Quality Attributes

The quality attributes are organised in the three packages dependability, performance and
functionality (see Figure 3.8).

32 UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

• Coherence: Coherence includes characteristics about concurrent and temporal consistency of data and software
elements.

• Throughput: Throughput refers to the number of event responses handled during an observation interval. These
values determine a processing rate.

• Latency: Latency refers to a time interval during which a response to an event must arrive.

• Efficiency: The capability of the software to produce their results with the minimum resource consumption.

• Demand: Demand is the characterization of how much of a resource or a service is needed.

• Reliability: The capability of the software product to maintain a specified level of performance when used under
specified conditions.

• Availability: Availability is the caability of the software product to be in a state to perform a required function at a
given point in time, under stated conditions of use. Externally, availability can be quantified by the proportion of
total time during which the software product is in an up state.

Figure 10-1 Quality Categories

10.2 Throughput Characteristics
Figure 10-2 includes a model for the description of different types of application of throughput concept. An abstract QoS
Characteristics (throughput) represent the throughput in general, during an interval of time and a rate, whose units or
direction are not defined (because it is abstract). This diagram considers three types of throughputs: input-data-
throughputs represents the arrival rate of user data input channel, software or hardware, averaged over a time interval.
The rate unit for this throughput is bit/sec, and the direction of this dimension is increasing. communication-throughput

<<QoSCategory>>
Performace

<<QoSCategory>>
Functionality

<<QoSCategory>>
Dependability

<<QoSCategory>>
Coherence

<<QoSCategory>>
Throughput

<<QoSCategory>>
Latency

<<QoSCategory>>
Efficiency

<<QoSCategory>>
Integrity

<<QoSCategory>>
Security<<QoSCategory>>

Reliability
<<QoSCategory>>

Availability

<<QoSCategory>>
Demand

Figure 3.8: Structure of the Quality Attributes [102, p. 32]

External Final Version 1.0, Dated March 16, 2009 21

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

Relevance for S-Cube

Since many organisations contributed to the OMG profile it is expected that the quality profile is quickly
adopted by industry and academia and, as a consequence, it becomes relevant for the S-Cube project (see
also Table 3.9).

Goal Relevance Rationale/Explanation

Quality Definition + The main focus of this quality model is to provide a language for specifying
quality attributes for software systems.

Quality Negotiation - There are no techniques to negotiate quality.
Quality Assurance - There are no specific techniques to assure the quality of software systems.

Discipline(s) Software Engineering

Table 3.9: Potential Relevance of the QoS Profile for the Goals of WP-JRA-1.3 (+ = fully relevant, o =
partially relevant, - = not relevant)

3.3 Statically Inferred QoS Attributes (Software Engineering / SOC)

In this section we will focus on the quality aspects of a service whose attributes (and other related
properties) are amenable to being statically inferred [96].

While non-trivial and interesting software properties are known not to be statically decidable, it
has been the case that many useful, safe approximations of relevant properties can be automatically
inferred ahead of run-time (i.e. without dynamically executing the software component), from sufficient
information on that component, and the components it interacts with. The process of inferring these
properties is known as static analysis. The same principle applies to Web services as specific kinds of
software components.

Static analysis is performed by an analyser that takes the source code of a Web service, along with
other information, performs analysis, and infers its QoS attributes and other properties.

Description of the Model

Static inference of QoS attributes for Web services can be performed at compile time, before services and
related resources are packaged for distribution. However, in complex and dynamic service environments,
some forms of analysis can be also performed at deployment time, in cases where distributions essentially
contain all required information (including source code); an example would be a distribution of service
assemblies containing BPEL process definitions. For compiled services, written in languages like Java,
C#, etc., the service infrastructure normally does not have access to the source code, and therefore, to
infer, prove or check properties of the service, it needs access to additional information, and it may even
decompile and analyse service byte-code [4, 3].

Another valuable kind of information needed for static analysis of a service relates to services it
interacts with. While this is not strictly necessary, it would of course improve the accuracy of the analysis
results, as more information regarding how the service under scrutiny interacts with its environment will
be available.

One obvious option, assuming a suitable analysis for the relevant properties and the programming
language at hand is available, is to simultaneously analyse these interacting services [81, 80, 32, 112].
This makes it necessary for the code defining these services to be available to the analyser. However,
the circumstances under which such simultaneous analysis can happen are usually restricted: at compile
/ design time, a developer would normally need access to the source code of these services, and at
deployment time the services would need to either belong to the same service assembly, or be deployed
on the same server.

External Final Version 1.0, Dated March 16, 2009 22

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

The hairiest issue issue in real service execution environments is probably that it may not be possible
to guarantee which particular service implementation, conforming to the same functional interface, will
be selected for pairing. In principle, such guarantee cannot be given in the generally decentralized and
distributed dynamic environment in which services operate.

One way to resolve the lack of information needed for the inference or proof of service properties
is to require that services are deployed together with a set of assertions that express properties of the
service and which should have been previously generated at compile / deployment time.

Service (source) code

Types
& ConstraintsQoS Semantics

Inferred properties Static Analysis

Other services (no source code)

Types
& ConstraintsQoS Semantics

Property assertions

Figure 3.9: A schematic view on static inference of service properties

Among the properties which impact quality of service (in a broad sense), the following (non-exclusively,
of course) may be inferred by using some kind of analysis tools:

Resource consumption: Various QoS attributes of a service can be expressed as properties which can
be statically analysed. In particular, particular those which are related with generalized resource
consumption [91, 92] can be used to predict, within a certain accuracy, the behaviour of a service or
service composition. Those whose consumptions grows monotonically can be seen as particular
instances of computational complexity, and include, for example, number of messages sent or
received, the total size of transmitted message, the total time waiting for an answer to arrive, etc.

Types and Constraints: Typing of in-bound and out-bound messages for services is usually based on
a set of structural constraints contained in an XML Schema, which are imposed upon XML mes-
sages that are exchanged [65, 64].1 Structural constraints may not be able to express all required
relationships between nodes (elements and attributes) in an XML document.2

A richer typing approach would allow structural typing information to be complemented with
relationships between the message contents [22]. By making this additional information an integral
part of service description, available at assembly, deployment and run-time, outgoing and ingoing
messages can be inspected to ensure that they have been created as required (for example, by
means of runtime checks) and not only from a structural point of view. This would thereby increase
robustness and overall quality.

More expressive type systems, which carry with them some of the intended semantics of the data,
can also be used when assembling services (either at design time or dynamically, as e.g., when an
adaptation is needed) in order to select those which are more adequate for the purpose at hand.
This has a clear relationship with the objectives of WP-JRA-2.2.

1XML Schemata also allow some referential constraints to be stated, by means of ID and IDREF attribute characterization.
2Or, in general, represented with any other syntax.

External Final Version 1.0, Dated March 16, 2009 23

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

Other Semantic-Related Properties: This includes service properties which do not fall under the above
two categories and which can be used to characterize QoS of a service or service composition,
while being amenable to inference by automatic static analysis.

Proposed Structure of the Quality Attributes

The usability of static inference of QoS attributes for Web services can be additionally enhanced in the
context of end-to-end QoS provision by means of:

Inference of safe bounds approximations: Static inference of QoS service attributes in the form of
safe lower and upper bound approximations, can produce guarantees that the actual QoS attribute
will behave within these bounds approximations. These guarantees can then be used for deducing
safe approximate grounds of QoS attributes for composite (or aggregated) service.

Input data awareness: Calculation of QoS attributes can be enhanced by taking into account features
(dimensions or metrics) of messages received by the service, that is, the message which initiated
service execution, as well as other potential messages accepted from the initiator (service client)
in the course of service execution.

Input data awareness leads to a significantly more refined and finer grained insight into service QoS
attributes and behaviour, and to descriptions of the safe bounds approximations for QoS attributes
in terms of functions over the input data.

Parametricity: Statically inferred QoS service attributes can be further improved by inclusion of param-
eters that cannot be statically inferred, but depend dynamically on features of the service execution
environment (network speed, latencies, throughput, degree of parallelism, etc.).

Inclusion of such run-time parameters in QoS attribute descriptions allows service infrastructure
to make better predictions and matchmaking decisions, at the cost of supplying actual values of
parameters at runtime, based on monitoring.

Relevance for S-Cube

Static inference of QoS attributes for Web services relates to several key research components of S-Cube.
First, it brings techniques and approaches of static analysis to the field of end-to-end QoS provision.
Second, static inference of QoS attributes as functions of input data can be useful for inference of the
key performance indicators (KPIs), within the S-Cube component dealing with BPM. Third, it can be
employed for inferring and using safe QoS bounds functions on input data for service compositions.
And, fourth, by integrating the inferred QoS functions with run-time parameters, static inference can
lead to a more precise, predictive monitoring.

3.4 Design by Contracts Models (Software Engineering / SOC)

Contract-based approaches have been used to enforce general and quality related constraints in object
oriented architectures and component-based systems. We envision its applicability to enforce quality
related constraints in service oriented architectures. In this section we review work on application of
contracts to object-oriented and component-based architectures with special emphasis on quality charac-
teristics.

A contract is an assertion on a combination of properties in a program. An assertion should always be
true if we wish to maintain the correctness of the program execution. The notion of a contract originates
in work [44] and Hoare [60].

External Final Version 1.0, Dated March 16, 2009 24

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

Goal Relevance Rationale/Explanation

Quality Definition + The model statically inferred QoS attributes defines QoS attributes in terms
of safe upper and lower bounds (potentially parametrized with attributes of
the run-time system) of generalized resource consumption, as functions of
input data.

Quality Negotiation + QoS expressed as functions of input data allow more expressive and flex-
ible negotiation rules and protocols, taking into account the profile of the
actual processing tasks.

Quality Assurance + Functions expressing safe upper and lower bounds of QoS attributes allow
QoS analysis for service composition and can be used to detect possible
violations in advance

Discipline(s) Software Engineering, SOC

Table 3.10: Potential Relevance of Static Inference of QoS Attributes for the Goals of WP-JRA-1.3 (+ =
fully relevant, o = partially relevant, - = not relevant)

In object-oriented software, assertions play an important role in the proper definition of types. Pre-
conditions, postconditions and class invariants help to define operation types in class interfaces. The Eif-
fel language developed by Betrand Meyer’s [87] contains native constructs to deal with the description
of preconditions, postconditions, class invariants, loop invariants and other assertions. These constructs
define a sound design process namely design by contract by B. Meyer. More recent approaches use OCL
for UML [55] or JML for Java [78].

Description of the Model

In this section we first present an overview of contracts and then focus on the application of contracts
to specify invariants, pre-conditions and post-conditions for quality modelling in object-oriented and
component-based software systems.

When contracts are applied to components, Beugnard et. al.[16] show how these contracts can be
classified into categories that describe four levels of increasingly negotiable properties:

• The first level of contract is named basic or syntactic level. Basic contracts address the common
type specification. Interface definition languages (IDLs) and typed object-based or object-oriented
languages let the component designer specify the operations that a component can perform, the
input and output parameters each component requires and the possible exceptions that might be
raised during operation.

• The second level is named behavioural level. Behavioural contracts improve the level of confi-
dence in a sequential context. Drawing from abstract data type theory, designers can specify an
operation’s behaviour using boolean assertions, called pre- and postconditions, for each service
offered, as well as for class invariants.

• The third level is named synchronisation level. Synchronisation contracts improve confidence in
distributed or concurrency contexts. They specify global behaviours of objects as synchronizations
between method calls. Synchronisation contracts aim at describing dependencies between services
provided by a component, such as sequence, parallelism, or shuffle.

• The fourth level is named quality of service level. Quality of service contracts quantify quality of
service and are usually negotiable. QoS contracts for provided properties and service depend often
from QoS properties of the services required from the environment.

Historically, contracts were first applied to object oriented design. Design by contract includes sev-
eral aspects:

External Final Version 1.0, Dated March 16, 2009 25

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

1. Verification of the satisfaction of preconditions and postconditions of class operations;

2. Definitions of compatibility of assertions with subtyping.

Regarding meta modelling of contracts, various approaches have been proposed ranging from the
reification of preconditions and postconditions without any management of subtyping or contract life
cycle, up to contracts metamodels that include provisions for coordination specification and management.
In this kind of metamodel, coordination invariants deal with the collective behaviour of the participants.

Modelling QoS of service using Level 4 contracts is the focus of this section. We envision the
extension of the ideas presented in this section to model QoS in service-oriented architecture based
systems.

Quality Attributes in Contracts

Syntactic level:

• Reusability The syntactic level relies on proper type definition, and type compatibility rules.
Reusability is ensured by defining operation signatures that are general enough.

• Trust Types can be checked at compile time; therefore invocation of an operation will succeed if
the system passed the compilation phase (although the method invocation of the operation may
fail, for instance because of a level 2 contract violation). Invariants are used to model the type
checking rules that ensure trust in the component; pre-conditions and post-conditions are used to
ensure trust at interfaces of components in a composition, by modelling type checking rules.

Just as components are, services can be specified using invariants, pre and post-conditions to ensure
their reusability and trust.

Behavioural aspect:
In this topic of binding the concept of design by contract and the concept of Components, Bertrand

Meyer has proposed the concept of trusted component in [88]. He identifies two challenges to the re-
search community:

• Reusability Pre-conditions and post-conditions are vital means of reusability support because they
define a precise perimeter where existing components are useful. As with type definitions, the
designers must try and define pre-conditions that are as weak as possible and post-conditions that
are as strong as possible, in order to be able to quantify the quality of existing components.

• Trust Trust relies on pre and post-conditions as well but aims to produce components with fully
proved correctness properties. Static checking of component service invocation is possible in
some cases, but in the general case, testing is the only means available and it uses heavily these
behavioural aspects of the contract system.

Use of contracts may offer additional benefits in the future, in the domain of services, where pre-
and postconditions may form the basis of systems that allow dynamic negotiation of contracts among
services.

Component synchronization:
Software components are processes that are executed at the same time and may exchange informa-

tion. They are often distributed over several computers, and do not share a global clock. Each component
is free to run at its own rate, but it must synchronize with other components when it needs to communi-
cate. This is known as asynchronous parallelism [28]. Asynchronous parallelism has consequences for
component reuse. A system built as an assembly of subsystems that have been proved correct is not itself
necessarily correct. For example, the interaction between two components that do not have any internal
deadlock may deadlock in combination if each awaits a message from the other.

External Final Version 1.0, Dated March 16, 2009 26

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

Dealing with these problems of asynchronous composition is a major obstacle to component reuse.
It is therefore necessary to specify component interfaces precisely using level-3 contracts, in order to
capture the information necessary to detect deadlocks or livelocks, and then to prove the correctness of
the assembly.

This problem is well-known and is not unique to the design of component based systems. It has been
addressed in the telecommunications domain for the specification of new protocols and in the hardware
systems domain for the design of multiprocessor architectures (e.g. cache consistency). Consequently
many formalisms have been proposed for studying it, from theoretical models like Petri-nets [111] and
I/O Automata [57, 83] to process algebras (CCS [90], CSP [61], LOTOS [69] or FSP [85]), or dedicated
languages (SDL [71]) in the Telecommunications domain, or SystemC [121] for the design of hardware.

• Reusability Synchronization contracts express coordination requirements for interaction between a
component and its environment. If these synchronization rules are not carefully designed, they can
lead to rigidity of use of the component and therefore they can limit the reusability of a component.

• Trust Whenever a component implementation relies on a specific order of operation calls to per-
form a service correctly, the designer must provide synchronisation contracts that ensure that these
operations are called in the proper order. Designer of component assemblies can then check that
the composition of components obeys the various synchronisation requirements and that the as-
sembly obeys the general service specification. This possibility provides a good support to the
trust quality criterion.

• Predictability By composing synchronisation contracts, designers can check for deadlock freedom.
This possibility improves the predictability of component assemblies.

In services domain, the problem of synchronization is still present and may require the use, as in
component-based systems, of level 3 contracts definitions to avoid deadlocks in services compositions.

QoS specification of components assembly:
At the interface level of components, other properties more quantitative can characterize a component

and its behaviour within an assembly. For example, if we consider a component that provides multimedia
content, user satisfaction can be affected by latency, video rates or synchronization between sound and
image. These extra-functional features are generally associated with QoS. Much work has been done
on the specification of QoS, and other extra functional properties, within the component interface, such
as SMIL (Synchronized Multimedia Integration Language) [63], TINA Object Definition Language [86]
an extension of CORBA IDL for the QoS specification, or the well known QML (Quality of service
Modeling Language) [48].

• Reusability Quantitative statements in component contracts typically provide means to choose
between implementations (e.g. using the memory footprint required by a given component imple-
mentations). Typically, this helps designers to choose an adequately sized implementation. This
possibility promotes reuse of components by easing the selection process for the component users.

• Trust In the component world trust is often related to timeliness of service execution, e.g. that
all executions of a component operation will terminate after a delay specified during contract
negotiation.

• Predictability Predictability has some correlation with trust but it may deals with stochastic prop-
erties, e.g. distribution of an operation response time. Predictability if often associated to perfor-
mance evaluation, while trust is associated with safety.

All these works on QoS specification about components assemblies can represent a great input for
services compositions quality definition.

External Final Version 1.0, Dated March 16, 2009 27

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

Context Quality Attribute Description/Definition

Basic level Reusability Proper type definition, and type compatibility rules.
Trust Ensure trust in component and its interfaces using in-

variants, pre and post-conditions for type checking.

Behaviour level Reusability Precise definition of the scope of reusability of a
component.

Trust Fully prove correctness of component properties

Component synchronization level Reusability Expression of the coordination requirements for in-
teraction between a component and its environment

Trust Contracts ensure that operations on a component are
called in the proper order.

Predictability Check for deadlock freedom by composing synchro-
nisation contracts.

Service level Reusability Quantitative statements in component contracts pro-
viding means to choose between implementations.

Trust Often related to timeliness of service execution: ter-
mination delay specified during contract negotiation
for example.

Predictability Often associated to performance evaluation.

Table 3.11: List Quality Attributes in Design by Contracts

Relevance for S-Cube

Contracts play a vital role in component-based architectures , as a key concept to describe components
and their assemblies. In a service oriented perspective, contracts also play a key role at the business mod-
elling level. Independently from the service implementation (which will most probably be component-
based), designers need concepts to specify collaborations and quality of service. Service metamodels
usually emphasize extensive means to define roles and responsibilities as well as contract life cycle; they
favour dynamic behaviour against verification ((see also Table 3.12)

Goal Relevance Rationale/Explanation

Quality Definition + Quality is expressed in the form of contracts such as pre-condition, invari-
ant, or a post-condition in a operation involving different components. The
contracts are often expressed in a formal constraint language such as OCL
[105]

Quality Negotiation - Contracts are used to specifying quality related constraints at component
interfaces but they cannot perform negotiation of quality between compo-
nents.

Quality Assurance + Quality can be assured by testing a component using test cases that satisfy
pre-condition contracts. In [119] [17] the authors present pre-condition sat-
isfaction as a means to automatically synthesize inputs to test a component.
Automatic test generation for components can be extended to service ori-
ented architectures in order to deal with unreliable service environments.

Discipline(s)

Table 3.12: Potential Relevance of Design by Contract Models for the Goals of WP-JRA-1.3 (+ = fully
relevant, o = partially relevant, - = not relevant)

External Final Version 1.0, Dated March 16, 2009 28

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

3.5 Functional Quality in Service Composition (SOC)

The Service-Oriented Architecture, together with Web Service technology, concentrate on the definition
of a software system as a complex distributed application that involves a composition of services. Com-
position rules describe how to compose coherent global services. In particular, they specify the order,
in which, and the conditions under which, services may be invoked. The complexity of the composi-
tion model, its structure, and interactions between the involved services introduce composition-specific
aspects to the application quality model. Moreover, the composite applications often span across the
enterprise boundaries and involve various stakeholders. These stakeholders often come into play with
their own requirements and policies that may be inconsistent or even contradictory in certain scenarios.
The quality of the service-based system directly depends on the correctness with respect to the desired
business requirements and expectations of all the interested parties. Figure 3.10 depicts the conceptual
model of service composition. It captures each element that a service composition model should provide.
A composite service must be described in terms of Service Process that is made of one Activity, a set of
Partners that interact with the process and, Data used by the process. Activities represents the actions
that a composite service executes to provide some functionality. Generalizing we can have a set of dif-
ferent activities that are used to accomplish different objectives in the composition. Interaction Activity
is used when we want to invoke partner services or when we allow our partners to invoke our services.
Context Activity permits to break up a process into separate units of work that represents execution con-
texts. Using a Concurrent Activity we can define a set of activities that will execute concurrently in the
service process while Conditional Activity is used to choose one of the possible alternatives path within
a process. The last concept is the Error Activity. It is the generalization of two different activities: Fault
Activity and Compensation Activity. The first is used to enable the process to recover from abnormally
terminated actions while the other attempts to undo the work of an activity or a set of activities that have
already been successfully completed in response, for example, to a fault occurring.

Service Integrator Composite Servicedevelops
Service Composition Service

Service Processis described in terms ofPartners *
Activity1 Data Type*

Interaction ActivityContext Activity Concurrent Activity Conditional Activity
Simple Data TypeComplex Data TypeError Activity Fault ActivityCompensation Activity

Figure 3.10: Service Composition Conceptual Model

Several organizations are developing languages for service composition, the most important one be-
ing the Web Services Business Process Execution Language WS-BPEL [18] (BPEL for short) and the
Web Services Choreography Description Language WS-CDL [131]. Many of these languages however

External Final Version 1.0, Dated March 16, 2009 29

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

have only a limited ability to support automatic service composition, mostly due to the absence of seman-
tic representations of the available services. The Semantic Web community and others have proposed
several solutions to these limitations, among which the Web Ontology Language for Web Services OWL-
S [1] and the Web Service Modeling Ontology WSMO [132]. A problem of the previous languages is that
they lack of software tools and approach to verify the correctness of service compositions. To solve this
limitations, formal methods and tools can be used to decide whether services satisfy desirable properties
and are interoperable. Moreover if one discover that a service composition does not match an abstract
specification of what is desired, or that a main property is violated, this can be of help to correct a design
or to diagnose bugs in a service. Recently several formal methods, most of them with a semantics based
on transition systems (e.g. automata, Petri nets, process algebras), have been used to guarantee correct
service compositions. A selective overview of the use of well-known languages and models by the formal
methods community, to realize the approaches to service composition has been presented in [123].

Description of the Model

In this section we present principal characteristics that a composite service must provide to guarantee
functional quality. As we show in Figure 3.11, to have quality in a service composition we must be able
to verify that the composite service is correct and interoperable. Thinking about service composition we
can have three different contexts in which we can define functional quality attributes: workflow, dataflow
and time. This means that the satisfaction of three set of requirements must be accomplished. Moreover,
for each contexts we have a set of functional requirements related to them that we explain in more detail
below.

Figure 3.11: Functional Quality Concepts

Service composition may lead to large, complex systems of concurrently executing services. Func-
tional properties of a new service can be determined and guaranteed, ensuring predictability and correct-
ness of the resulting service properties.

Functional correctness for service compositions amounts to verifying the following aspects [89]:

• Type checking is ensured: Assure that the data flow in the composition is consistent with respect
to definition of literal types.

• The composition invariants are preserved: The composed process should satisfy functional re-
quirements;

• Composed process terminates correctly (e.g., absence of deadlocks or livelocks).

External Final Version 1.0, Dated March 16, 2009 30

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

Composition requirements (choreography assumptions [113]) define the requirements, under which
the component services participate in the composition. Functional requirements relate to the purpose of
the composition, i.e., the task it has to accomplish. They restrict the valid behaviors of the composition
component, and the actual executions of the composition should correspond to them.

Composition requirements may refer to different aspects of the composition execution:

• General requirements, which represent constraints and rules according to the business logic of an
application.

• Transactionality requirements (e.g., define the consistency and/or atomicity rules).

• The concurrency and coherence requirements (e.g., the rules and constraints on message ordering
and relations).

• The data quality properties (e.g., constraints on the data flow and data dependencies across the
execution of a composition: integrity, validity).

• The time quality properties, such as constraints on activity, transaction, or process durations (la-
tency, response time, transaction time).

According to the classification proposed in [36] and [123], the following types of correctness re-
quirements may be considered:

• Safety properties express that something (bad) never occurs. These properties include assertions,
invariants, properties that define a sequence of events, properties that check values of variables,
and properties that deal with resource allocation.

• Liveness properties assert that some event does eventually happen.

Correctness of service composition requires that the properties of the composed service must be
verified. In order to ensure functional correctness of the service composition, all the existing quality
assurance techniques may be foreseen: testing, static analysis, and monitoring. Depending on the re-
quirements type and addressed aspects, these techniques may use different formalisms and capabilities
to represent and analyse the requirements.

The standardisation of Web Services makes their interoperability easier, however the problem of
service compatibility remains. While the lower levels of the interaction stacks are standardized, different
Web Services may still support different interfaces and protocols. In fact, having loosely-coupled and
B2B interactions imply that services are not designed having interoperability with a particular client in
mind. They are designed to be open and possibly without knowledge, at development time, about the
type of clients that will access them.

Interoperability among Web Services, just like interoperability in any distributed system, requires
that services use the same (or compatible) protocols, data formats, and semantics. With respect to service
data incompatibility, the following types of mismatches may be identified [114]:

• Structural incompatibility is a mismatch in the structure of the (XML) message sent by the sender
and expected by the receiver.

• Value incompatibility arises when the structure is as expected, but the filled-in values are unex-
pected.

• Encoding incompatibilities arise because instances belonging to different schema types are not
identical even if they have the same structure and identical values.

• Semantic incompatibilities arise when different vendors introduce extensions with identical syntax
(i.e., same structure and value) but differing meanings.

External Final Version 1.0, Dated March 16, 2009 31

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

Service interface incompatibilities arise when the services provide operations that have the same
functionality but differ in operation name, number, order or type of input/output parameters.

Service behavior incompatibilities arise when the services have different business protocols [12]. A
business protocol specifies message exchange sequences that are supported by the service, for example
expressed in terms of constraints on the order in which service operations should be invoked.

There exist several notions of quality characteristics related to the problem of interoperability:

• Compatibility amounts to the necessity of two interacting parties to fulfill each other’s constraints
and, therefore, to correctly interact.

• Substitutivity (replaceability) requires that one service demands fewer or fulfills more constraints
than another service and therefore can substitute it in the composition.

• Reliability amounts to the ability to deliver responses continuously in time (service reliability) and
the ability to correctly deliver messages between two endpoints (message reliability).

• Accessibility: The responsiveness towards service requests.

• Exception handling/Compensations: What happens in case of an error and how to undo the already
completed activities. Since services are usually long-running processes that may take hours or
weeks to complete, the ability to manage compensations of service invocations is critical.

• Conformance amounts to the necessity of the services participating to the composition to respect
the global protocol. That is, all the behaviors generated by the services should conform to the
conversations foreseen by the protocol model.

In order to ensure the interoperability requirements, both static and dynamic analysis means are foreseen.
Static Analysis techniques (e.g., model checking) are used, for instance, to check the compatibility or
substitutivity requirements. Dynamic analysis techniques (e.g., run-time monitoring) are used to check
the conformance at run-time, in order to guarantee that the services do not violate the global protocol or
their own published protocols (e.g., domain monitoring in [113]).

Table 3.13 summarizes all functional quality attributes introduced above categorized respect to the
context in which are relevant. Its first column shows three contexts in which we can define various quality
attributes that are listed and described in the other two columns. We can notice that each context and
each attribute in this table have already been depicted in Figure 3.11 as concepts.

Relevance for S-Cube

S-Cube’s goals include describing the functional quality of service compositions. The main problems
with most practical approaches to service compositions are the verification of correctness and the analysis
of interoperability. As we said in Section 3.5, due to their solid theoretical basis, the use of formal
methods can increase the correctness and the interoperability of service compositions. Moreover, the
tool support that comes with them allows the simulation and verification of the behaviour of a model at
design time, thus enabling the detection and correction of errors as early as possible and before before
implementation. Table 3.14 summarizes the relevances of these functional quality characteristics for
S-Cube.

3.6 Service Networks and KPIs (BPM)

In this section we present Service Networks which is a model situated on the BPM level of the S-Cube
Layering. Its quality is assessed in terms of Key Performance Indicators (KPIs) which measure quality
attributes on the business level (a.k.a. quality of business (QoBiz); cf. Chapter 2).

External Final Version 1.0, Dated March 16, 2009 32

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

Context Quality Attribute Description/Definition
WorkFlow Deadlock-free Never happen that none of the services in the composition meet the

condition to move to another state and all the communication protocol
are empty.

Livelocks-free Some event does eventually happen.
Invariancy The composed service should satisfy functional requirements.
Safety Assertions that some undesired event never happens in the course of

the workflow.
Protocol Conformance Successfull conversation among services.
Message Compatibility No mismatch among messages sent and received.
Repleaceability The ability to substitute a service, in such a way that the change is

transparent to external clients.
Concurrency The ability to perform concurrent processing.

DataFlow Type Consistency The data flow is consistent with respect to definition of data types.
Compatibility The necessity of interacting services to fulfill each other’s constraints

and, therefore, to correctly interact.
Structural Compatibility XML messages sent by the sender and expected by the receiver have

the same structure.
Value Compatibility When two Web Services have the same structure and identical filled-in

values.
Encoding Compatibility When Web Services instances, belonging to different schema types,

are indentical and have the same structure and values.
Semantic Compatibility When different vendors introduce extensions with identical syntax

(i.e., same structure and values) and the same meanings.
Time Responsiveness A service is able to response when invoked.

Transaction Time Represents the transactional properties of the service.
Availability The probability that a service is available at any given time.

Table 3.13: List of Functional Quality Attributes

In today’s networked economy, there is an increasing need for companies to act together in a con-
certed manner to meet the needs of their joint customers. Thereby, interacting companies build networks,
focusing on optimizing their financial benefits both at the individual and the network level. Service
(Value) Networks (SNs) is an approach for modelling such networks and for analysing and optimizing
company’s business collaborations [26]. A business environment is modelled as a graph consisting of
business partners and their relations depicting partners as nodes and their offering and revenues as edges.
An SN offers services that are obtained by composing other services provided inside the SN by different
partners.

Modelling a business landscape as SN allows both calculating the value gained by a single partner
when joining the collaboration network and measuring the value of the whole network. An SN is not
necessarily modelling interactions between different companies, but can also be used for modelling dif-
ferent units in a company. For example, a company could use the SN to model its internal business unit
structure as SN, measure the profitability of the structure and perform some changes for improvement,
e.g., decide to in-/outsource some units.

Description of the Model

Casewell et al. proposes an approach on how to calculate value of the SN by taking into consideration also
customer satisfaction in addition to financial metrics [26]. The value of an SN is a KPI (Key Performance
Indicators) that can be measured for the SN as a whole and for a single partner in the SN based on
the following KPIs: revenues resulting from offering of certain services (which can be tangible and
intangible), cost for providing these services, and customer satisfaction. These KPIs are again calculated
based on a set of lower-level KPIs. KPIs can be regarded as quality attributes of an SN.

External Final Version 1.0, Dated March 16, 2009 33

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

Goal Relevance Rationale/Explanation
Quality Definition + The main focus of functional quality model is to define quality properties

that we want to verify to guarantee that a software systems is correct and
that each piece of software is interoperable.

Quality Negotiation o To guarantee interoperability among services we can use existing auto-
matic techniques [20, 13] to generate adapters capable of solving behav-
ioral mismatches in a service composition.

Quality Assurance + The analysis methods enabled by formal methods allows to predict the
correctness and interoperability of a software system and, thereby, assure
its functional quality attribute.

Discipline(s) Software Engineering

Table 3.14: Functional Quality for the Goals of WP-JRA-1.3 (+ = fully relevant, o = partially relevant, -
= not relevant)

In Table 3.15 we present a possible classification of KPIs and some typical example KPIs. This
classification is used in the Balanced Scorecard [73], which is a popular performance measurement
instrument in the business world. The KPIs are thereby grouped according to four dimensions: financial,
customer-facing, operational, and specific to “learning & growth”.

Context Quality Attribute Definition

Financial Revenue Income of the company received from the sale of goods or services
during a certain period of time. Revenue can be expressed as a function
of the price per unit of the good for sale and of the amount of goods
that have been sold in a time period

Cost Amount of money that is spent to produce or provide goods or services
during a period of time. It is a function of supplies, services, labour
and equipment used in a time period

Relationship Value Value that is expected to be acquired due to all companies’ relation-
ships and interactions with other economic entities within the value
network during a period of time ([26]). It is a function of the cus-
tomers’ expectations that is measured by the customer satisfaction in-
dex, and of the expected revenues of company during the time period

Value Difference between revenues and costs, increased by the relationship
value that is expected to be captured in the next time period ([26])

Rate of Return Ratio of the amount of money gained or lost in an investment relative
to the amount invested

Return on Equity Ratio of the profits of a company relative to the shareholders’ equity

Customer Product Quality Measures the performance of the product. It is a function of reliability
(failure rate, mean time between failures), serviceability (mean time to
repair) and conformance to customers’ expectations

Product Variety Measures the degree of flexibility offered to the customer
Brand Recognizabil-
ity

Measures the identity of a company

Satisfaction (as intro-
duced in [26])

A measure to quantify the level of relationship between the company
and its customers during a period of time. Satisfaction is a function
of the price, delivery time, brand name, product variety and product
quality

Delivery Time Per-
formance

Percentage of orders that are fulfilled before or at the requested date

Price Impact on Rev-
enues

Price change’s impact on the fluctuation on total revenue amount

Operational Process Cycle Time Duration of business processes
Process Cost Cost of business processes

External Final Version 1.0, Dated March 16, 2009 34

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

Context Quality Attribute Definition

First Pass Yield Percentage of products/services which could be processed without re-
work

Cost of Goods Direct cost of material and labor to produce a product or service
Value Added Produc-
tivity

Direct material cost subtracted from revenue dividing the result by the
number of employees

Learning &
Growth

Investment Rate Rate of new investments

Innovation Rate Ratio of the revenue with new or improved goods or services relative
to the total revenue

Training Hours Ratio of training hours compared to overall working hours
R&D Investment R&D costs as a percentage of revenues

Table 3.15: Classification of KPIs

Relevance for S-Cube

KPIs are relevant to the S-Cube Quality Model as they also define quality characteristics for SBAs. They
do this however on a higher level than quality models for Web services. KPIs assess the quality of an
SBA on the business level, i.e., e.g. how an SBA (with its QoS characteristics such as availability and
response time) affects customer satisfaction and revenues. By integrating QoS and QoBiz characteristics
into a single quality model and modelling their relationships, one will be able to reason about their
dependencies (i.e., how in a particular SBA, QoS characteristics affect QoBiz and vice versa) during
quality negotiation and quality assurance.

Goal Relevance Rationale/Explanation
Quality Definition + The SN quality model is specified in terms of a value calculation based on

KPIs. Apart from examples, there is, however, no formal model, classifi-
cation or guidance yet on how KPIs are to be specified.

Quality Negotiation - There are no techniques to negotiate quality.
Quality Assurance + The quantitative analysis method as presented in [26] enables to calculate

the value of the SN as a whole and of each single partner in the SN and is
the basis for optimization purposes, such as outsourcing decisions.

Discipline(s) Business Process Management

Table 3.16: Potential Relevance of Service Networks for the Goals of WP-JRA-1.3 (+ = fully relevant, o
= partially relevant, - = not relevant)

3.7 Grid Quality Model (Grid Computing)

At the time of writing there is no accepted reference quality model for Grid computing. Therefore, this
section presents quality attributes currently offered by and proposed for Grid computing and combines
them into a quality model. There are many different interpretations of what Grid computing is, here
it is defined as a type of distributed computing infrastructure, possibly geographically-distributed and
cross-organisational. This infrastructure is constructed using general-purpose software libraries and/or
middleware such as Globus, Unicore, gLite or NAREGI, deployed on loosely-coupled heterogeneous
computers and used to complete computationally intensive tasks and/or data storage.

A quality model is a formal description of non-functional properties of a composite system or indi-
vidual system within a composite system. With the above definitions in mind, this section reviews the
qualities provided by current production Grids and experimental and prototype Grid middleware. The

External Final Version 1.0, Dated March 16, 2009 35

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

review is structured using the quality characteristics categories from ISO9126 [70], presented earlier in
Section 3.1.

Description of the Model

Performance I: Best Efforts:
Production Grids, such as the UK’s NGS (National Grid Service) [93], US TeraGrid [124], Scandi-

navian NorduGrid [97] and pan-European LCG (Large-Hadron Collider Grid) and EDG (European Data
Grid) [77, 41], have been in operation for several years and often provide a best efforts service to their
users. Generally, the performance characteristics of these Grids is known in advance and is fixed. When
submitting jobs to the Grid users are often allowed to specify what configuration of hardware (e.g., num-
ber and type of CPUs and amount of memory) they would like the job to be run on so they are guaranteed
a certain level of performance in a heterogeneous environment. The time taken to execute an application
by the Grid is often not guaranteed because of three factors; first, production Grids are often operated
under a high utilisation scheduling policy that optimises resource usage rather than task turnaround time.
Secondly, the task may be user-supplied code that has not been benchmarked or run on the execution
platform before, i.e. there is no historical information on how the application performs — therefore the
performance and resulting execution time of an application cannot be guaranteed. Finally, even with
standard, well-known applications or simulations the time required to complete a task using it may vary
depending on the input parameters given to the application (as demonstrated in the butterfly effect [82]).
Thus, in the quality characteristic of time to complete a job, it is common for this not to be guaranteed.

The total time to complete a task by a Grid is the sum of the time a job is queued for and and its
execution time. As with the execution time discussed above, it is common for current production Grids
not to commit to a queueing time. For example, on the University of Manchester’s NGS Data Node
“job turnaround cannot be guaranteed, as the system may be heavily utilised and incoming jobs wait in
queues waiting for existing jobs to finish” [45]. Also, jobs that have been queueing longer often are given
priority over urgent jobs, as this quote from a Service Level Description of a Grid cluster shows: “jobs
that have been queuing for a long time are given a higher priority” [62]. Therefore, if an urgent job is
submitted may be no guarantee it will be run first. Further, Grids using the popular Condor middleware,
often used to backfill spaces between higher priority jobs to increase utilisation, also cannot guarantee the
scheduling time (and therefore completion time) of jobs because backfilling is opportunistic and carried
out whenever there is sufficient slack in the schedule.

Throughput is another measure of performance. However, because of the heterogeneous nature of
jobs being executed by a Grid it is also difficult to provide a meaningful figure for the throughput of
jobs (defined as the amount of completed jobs per unit time) as this will vary depending according to the
number and types of jobs completed by a Grid.

Performance II: Guaranteed Resources & Completion Times:
Newer, experimental Grid middleware such as those provided by Akogrimo, AssessGrid, BREIN,

BEinGRID, NextGrid and TrustCOM seek to bring a solution to the problem of meeting a guaranteed
completion time (and to some extent throughput) through two techniques. The first technique is allowing
the advance reservation of a period of time on a computational resource and the user to submit the job a
before the period starts. Advance reservation like this is currently being retrofitted to some of the pro-
duction Grids introduced above to support the requirement for co-allocation (when two systems need to
work together at the same time, for example when coupling atmospheric and oceanographic simulations)
and/or interactive jobs. The HARC middleware [84] has been developed to provide this function for
production Grids as it allows an agreement to be made with a service provider for a guaranteed amount
of time a Grid component (e.g., application, processor, storage or network) will be available for sole
use. Thus, queueing time can be reduced but there is still the possibility the task cannot be scheduled
at a particular moment in time or in an ad-hoc fashion because the component may already have been
reserved or be in use.

External Final Version 1.0, Dated March 16, 2009 36

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

The second technique to allow a Grid to meet a guaranteed deadline is to vary the amount of resources
allocated to a particular task. For example, in the BREIN project each task is launched in a virtual
machine running on a hypervisor platform. The progress of the job running in the virtual machine is
monitored and, if the job is not meeting the agreed level of performance, more system resources (e.g.,
memory or share of the processor) is allocated to the virtual machine so the job completes in a shorter
time. Alternatively, if the task is completing quicker than anticipated system resources can be taken from
the virtual machine so it slows down.

Dependability:
In production and experimental Grid systems, monitoring systems3 such as Ganglia [50], the Globus

MDS [52] and Condor [30] are used to observe the current status and availability of Grid resources. The
results of the monitoring, such as capacity of a Grid (e.g., number of hosts and/or available processors),
the uptime, downtime and average reliability (jobs completed versus submitted) is made public, such as
shown on the NGS Grid Reporting Page [51], the ALICE (A Large Ion-Collider Experiment) Grid status
page [5] or the NorduGrid ARC monitor [98]. The non-core services such as Grid monitoring systems
can also have their own qualities of service guaranteed, such as the frequency of monitoring and the
freshness of monitoring data.

The experimental AssessGrid middleware builds on top of information produced by monitoring sys-
tems (in this case the OpenCCS monitoring software developed by Paderborn Centre for Parallel Com-
puting [106]) through the mining of historical information about a Grid to give it a ‘confidence’ rating.
Thus, the AssessGrid “middleware adds a ‘risk algorithm’ to the architecture of a grid, enabling [them]
to calculate security, trustworthiness and dependability” [8]. Then, when a user is looking to submit a
job she can use a broker that collates the confidence rating of each provider which can complete her job
and use this information when deciding where to submit it.

The reasons for faults in a Grid environment can be manifold; the geographically widespread nature
of a Grid which spans multiple autonomous administrative domains, variations in the configuration of
different systems, resources that have unpredictable behaviour, problems with the connecting infrastruc-
ture or systems just running out of consumable resources (i.e., memory or disk space) are some of the
possible sources. When discussing dependability of a Grid how it recovers from one of these faults is
an important factor. Thus, automated procedures may be in place to recover from faults. For example, a
Grid may try to retry the job (possibly on an alternate resource) or restart the job from a checkpoint of the
application taken before the job failed. Such procedures are available when using the Taverna workflow
scheduling system [122] or Condor [31], for example.

When a fault cannot be automatically fixed, production Grids often offer a mechanism for fault
escalation, which can be given a priority and category definition. A good example of this is the UK’s NGS
service that defines categories of supported software, such as Category 1 (high-quality, well documented
and understood software) to Category 3 (software provided with no promise of technical support). Faults
with each of these categories and/or the Grid fabric can be assigned a severity definition, or a priority
level. These levels range from Level 1 (a problem that effects most users across the entire NGS or a whole
site) to Level 4 (a problem where the impact is confined to a single individual). Escalation mechanisms
and procedures are then assigned to each category and priority. For example, a Category 1 problem
would be dealt with by the Service Manager rather than the usual helpdesk staff.

Security:
Most (if not all) Grids provide some form of access control to their infrastructure, the first step

of which is authenticating users to establish their identity. In Grid computing, this is usually carried out
using public key cryptography (or asymmetric cryptography) offered through a Public Key Infrastructure
(PKI) with the keys issued by Registration Authorities (RAs) on behalf of Certificate Authorities (CAs).

Each CA usually has a policy regarding the level of proof a person has to give in order to establish
their identity and be issued a certificate which will represent them on the Grid. In the case of the NGS,
the proof one must present in person to the RA is your passport. This should be compared with the

3A survey of Grid monitoring systems and a discussion of how they can be classified is given in [133].

External Final Version 1.0, Dated March 16, 2009 37

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

SWITCHslcs CA (The Swiss Education & Research Network CA) that requires identity documents to
be submitted remotely by fax or email [128]. Thus, certificates issued by different CAs using different
policies will have different levels of assurance as to the identity of the entity using it.

Different Grids can also offer different levels of security quality based on the length of the keys issued
on behalf of the CA (as information encrypted with a longer key length is more difficult to decrypt). For
example, the recommended length of user and host keys is on the EDG is 1024 bits [72] whilst on the
Deutsche Forschungsnetz Grid (DFG) the minimum key length is 2048 bits [38].

In addition to key length, another quality of PKI-issued keys is the lifetime of a key, after which the
key will not be accepted by a Grid. The argument is the shorter the lifetime of a key the more secure it
is as there is less time for it to be compromised before it is renewed. Therefore some Grids (such as the
UK e-Science Certificate Authority that issues internationally-recognised keys to academics in the UK)
use key lifetimes of 1 year whilst others may offer longer or shorter lifetimes.

Once a user’s identity has been authenticated by their key they must be authorised when they attempt
to perform actions. It is general policy that PKI keys should not be shared between users or hosts and,
thus, they provide a strong assertion that the entity presenting the key is the entity the key was issued
to. Thus, non-repudiation is a built-in function of such PKIs and provides a method of auditing and
accounting and tracing who did what on a Grid. A common method of auditing is to analyse the log files
produced by the underlying schedulers which record the start and stop times of jobs, on which node they
were run and which user’s identity they were run under. These logs can then be broken into Grid Usage
Records (URs) [115] which form the basis for the auditing.

Logging of jobs submitted to and completed by a Grid is not the only information collected about
the Grid’s security environment. For instance, a CA will also log events such as certificate requests from
users, acceptances of requests by the RA, certificates issued and revocation requests from users and RAs.
This is to detect any strange behaviour from a particular party attempting to breech the Grid security by
obtaining multiple or counterfeit certificates.

Data-related:
As well as providing a compute facility, Grids also provide facilities to store data for processing or

reference. Local data written to disk may be offered with a quality of service describing the performance
of the storage subsystem (i. e. speed of data read or written). In addition local or remote data can be
guaranteed a level of redundancy or robustness through the capabilities of the storage subsystem. An
example of where this can be found is in the HPC4U middleware [67] that can guarantee levels of
resilience, such as mirroring and RAID5, and provide guarantees on the average performance of the
local storage subsystem in reading and writing data [68].

On-line data will often be subject to a backup and retention policy. For example, a full backup of data
in user areas may be performed every week with incremental backups taken every night, as in the HPCx
backup policy [66]. Data stored on scratch disks may not have any retention policy at all. Backed-up
data may copied to more than one replica and stored off-site for greater protection against a catastrophic
data-centre failure.

Configuration management:
Grids attempt to provide a stable and predictable environment for their users and therefore many

have a minimum software specification a compute or storage node must conform to. For example, [104]
documents the components required for a resource to become part of the UK National Grid Service.
Users are informed of any changes to components through mailing lists and on central websites well in
advance (typically weeks ahead) of the work being carried out [58]. When changes are carried out the
upgrades and modifications are documented in “detailed change control logs” [58]. Thus, the presence
of clear change management procedures on a Grid is an indication of how stable the environment many
be.

However, given the number of nodes a Grid may contain it can be the case that some computers may
be out-of-step with the most recent version of an application of library when it is upgraded. Thus, many
production Grids have a set of confirmation scripts and tests which can be automatically and periodically

External Final Version 1.0, Dated March 16, 2009 38

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

run against each node to determine its current configuration and alert users and administrators a node does
not meet the current specification. These tests can not only determine if a Grid middleware component
has the correct version but also that it is correctly configured, running and capable of being used. The
results of such tests can be seen at [95] and [94], for example.

Cost:
Very few (if any) production Grids have a dynamic charging capability. Groups of users (e.g., a

research project or University department) are often provided time on a computing system through a
research grant or centrally-administered and given a quota of time on a Grid they can use for a week,
month or calendar year or the duration of the project. Thus, the economic model they operate is a token-
based, fixed-cost model regardless of the actual cost of operating the Grid nodes (as some may be more
expensive than others).

With the advent of experimental market inspired [19] or business-oriented Grids (BOGs) such as
those provided by Akogrimo, BREIN and NextGRID the real cost of providing a service has moved to
the forefront of Grid quality characteristics as a means of differentiating between services (e.g., a faster
service provided in working hours may be more expensive than a slower service provided overnight)
and fairly recompense Grid providers. Many different economic models have been proposed and/or
implemented to determine the price of a Grid resource [19] and many more will no doubt be found in
the coming years especially with the recent advent of cloud computing [23], which seeks to bring more
dynamic behaviour to distributed computational computing through provisioning resources on demand
and reduce the cost of operating large-scale systems [11].

Network and Infrastructure-Related:
Grid computing nodes and sites are connected through a network infrastructure. These network

paths may also have QoS guarantees associated with them. Circuit-switched networks, including ATM
(Asynchronous Transfer Mode) technology, can provide guaranteed and predictable data transfer rates
and delays because each circuit is dedicated to one use. The UK ESLEA project [42] explored how
Grid nodes could be connected using a circuit switched network (in this case provided by the UKLight
service [127]) and users were able to reserve in advance a fixed amount of bandwidth, an upper-bound
on latency (the delay in sending a particular packet) and jitter (the variation in latency between packets)
between two points.

However, in packet-switched networks it is typical not to guarantee the precise amount of bandwidth
of a link or its latency as these may vary during the period the users data is being transferred because
of other traffic using the same network and infrastructure. Therefore, QoS are usually are given as a
guideline or prediction from aggregated historical information. For example, providers will usually state
a network link can provide a bandwidth of ‘upto 2Mb/s’, with no guarantee this will be met.

Usability:
Usability is a quality not often stated as a requirement in a production Grid and the lack of usability

has often been a source of complaint from their users [27, 10]. When interacting with the middleware
Grid users are expected to have some knowledge of the UNIX operating system, the middleware the Grid
is using, general programming techniques [107] and how a PKI infrastructure (and associated tools)
operate. Some relief for non-technical users has come through the deployment of Grid portals, often
built using the Gridsphere toolkit [54]. These portals increase the usability of Grids for users as they give
a web-style working environment for the (possibly) heterogeneous infrastructure making up the Grid
and provide insulation from the workings of the middleware. Because of their ease-of-use, Grid portals
play an important role in Grid interoperation as well as usability — different production Grids may be
available from a single portal opening up Grid computing to people who are not computer scientists.

Regarding the functions Grid portals, typically a portal is capable of offering resource discovery
(showing the status of all the clusters), job submission (possibly with easy access to popular applications)
with automatic resource selection, file transfer, management and editing (e.g., create and delete and
rename files, change permissions, etc.) and visualisation of results.

The new-generation of Grid middleware from the EC FP6 projects introduced above has introduced

External Final Version 1.0, Dated March 16, 2009 39

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

different usability qualities to Grid. For example, in AssessGrid the Broker and Confidence services can
be integrated into a portal to guide the user when making a decision about which resource provider to
submit their job to.

The list of quality attributes is summarised in Table 3.17.

Context Quality Attribute Description/Definition

Performance
Scheduling strategy How jobs are prioritised for execution.
Hardware profile Minimum configuration guaranteed, ‘best efforts’, etc.
Data subsystem performance Speed of local disk read and write on the Grid node.
Job queueing time Period of time between submitting and executing a job.
Job execution time Length of time required to complete a job.
Job execution time estimation How an estimated execution time is calculated (e.g., from his-

torical information, simulation, on-line learning, etc.)
Guaranteed job start/end time How the job start/end time is guaranteed (e.g., advance reserva-

tion, priority-based).

Dependability
Node & job Monitoring Monitoring policy for jobs and nodes.
Monitoring frequency Period of time between collection of monitoring information.
Monitoring data freshness How recently was the data collected.
Service confidence rating How ‘confident’ the provider or third-party broker may be that

a service can meet QoS claims.
Action on job on failure E.g., retry, restart job from checkpoint.
Action on node failure E.g, Retry job on another node, restart from checkpoint.
Fault escalation mechanisms If job cannot be retried or restarted, how is the fault escalated?

Security
Credential issuing policy Under what conditions credentials will be issued.
Credential strength E.g., length of X.509 key issued.
Credential lifetime Length of time a credential is valid for.
Revocation policy/speed How long it takes to get a credential revoked.
Logging policy Which/what security-related events are logged.

Data
Level of hardware redundancy E.g., what level of RAID on-line data is stored.
Backup scheme How on-line data is backed up and taken off-line.
Backup frequency Period between full and/or incremental backups.
Data retention period Period of time backups are held.
Backup replica policy Number and type (e.g., disk or tape) of replicas taken.
Replica storage On-site or off-site, etc.
Data restoration policy How user data is restored from replicas.

Configuration management
Change management procedures What are the documented change management procedures.
Change log management How is information about changes made disseminated and

stored.
Monitoring of node configuration Is the configuration of nodes monitored (and/or, how?).

Cost
Price Model How a price for a service is determined.
Economic model Micro- or macroeconomic principles for resource management

(e.g., auction, bidding or commodity model).
Charging model Upfront, pay-as-you-go, credit-based, etc.

Network and Infrastructure-Related
Bandwidth Rate of data transfer.
Latency Delay or wait time for data to be transferred to another node.

May be one-way or round-trip.

External Final Version 1.0, Dated March 16, 2009 40

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

Context Quality Attribute Description/Definition

Latency variation (jitter) Variation in latency.
Packet loss and recovery Packet lost on network and how lost packets are recovered.

Usability
Grid portal Single interface.

Table 3.17: Grid Quality Characteristics Categorised According to the
ISO-9126 Quality Dimensions

Relevance for S-Cube

From the details given above, non-functional qualities that may be guaranteed by a Grid infrastructure
can be extracted. These are described according to their contexts in Table 3.17.

The Grid quality characteristics derived from the above analysis are relevant to the S-Cube Qual-
ity Model as they define quality requirements for services at the infrastructure-level. The Grid quality
model presented here can be used in the negotiation of quality assurance and negotiations These quality
characteristics can also be applied more generally to composite services and service-based applications.

Goal Relevance Rationale/Explanation
Quality Definition + As described in the text, the terms in this quality model are well defined

and used in current Grids.
Quality Negotiation + The negotiation and agreement of quality characteristics have been well-

studied in Grid computing. This work can be re-used in S-Cube.
Quality Assurance o Quality assurance methods are also well-studied, but their practical usage

requires more research.
Discipline(s) Grid Computing

Table 3.18: Potential Relevance of Grid Quality Model for the goals of WP-JRA-1.3 (+ = fully relevant,
o = partially relevant, - = not relevant)

3.8 Summary

Table 3.19 summarizes the differing relevance of the analysed quality models for the key goals of the
workpackage.

Software Engineering SE / SOC SOC BPM Grid
UML

Goal ISO Reliab. SPT QoS Infer. Contr. Compos. SVN/KPI Grid

Quality
Definition + o + + + + + + +
Quality
Negotiation - - - - + - o - +
Quality
Assurance o o + - + + + + o

Table 3.19: Summary of Relevance of Models for the Goals of WP-JRA-1.3 (+ = fully relevant, o =
partially relevant, - = not relevant)

As can be seen from the table, the different quality models are of different relevance for the goals of
this workpackage. For example, where many of those models obviously support quality definition, only
a few are suitable – as they are – to be used for quality negotiation.

External Final Version 1.0, Dated March 16, 2009 41

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

In addition, the quality models analysed in the previous sections typically considered a small number
of quality categories and in each category only some representative quality attributes. Further, these
quality attributes were specific to the respective disciplines or layers of a service-based application.

External Final Version 1.0, Dated March 16, 2009 42

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

Chapter 4

The S-Cube Quality Reference Model

To build the S-Cube Quality Reference Model and to address the problems identified in Section 3.8, we
took into account the following considerations:

• Based on the analysed models from all relevant S-Cube disciplines, the relevant quality attributes
of all layers of a service-based application are considered.

• We do not consider only domain-independent quality categories and attributes but also some of the
most frequent domain-dependent ones like the quality categories of Data-related, used for services
operating on and/or producing data, and Quality of Use Context, used for context-aware adaptive
services.

• We consider quality categories and attributes that are relevant not only for the service and its
service provider but also for the service requester (cf. [108]). For example, the dependability
quality category is important for the service provider but not for the requester while the usability
quality category is important only for the requester/user. Thus, we take into account both the
service provider and service requester views.

• In each category there is an extensive list of the most representative quality attributes including not
only atomic but also composite quality attributes produced from atomic ones like response time,
failure semantics and robustness.

4.1 Quality Categories of the Model

In the remainder of this chapter, the S-Cube QRM will be described by focusing on each quality cate-
gory in order to justify why we have included it, explain what is its purpose and describe some of its
representative quality attributes.

We are going to present the quality attributes of the QRM in Section 4.2 in form of a table. In this
table, each row will correspond to a quality attribute and will contain three fields/columns, namely Name,
Parent and Definition. The first and the third field correspond to the name and to a small definition of
the quality attribute, respectively, while the second field signifies the parent quality attribute if it exists
or otherwise the category of this attribute.

Finally, a graphical representation of our service quality model is given in Section 4.3.

Performance

The Performance quality category contains quality attributes that characterize how well a service per-
forms. Two quality attributes with a very well defined meaning are common among all research ap-
proaches: response time and throughput. In our quality model, response time is regarded as a composite

External Final Version 1.0, Dated March 16, 2009 43

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

quality attribute computed from latency and network delay. Similarly, latency is composite and is com-
puted from execution time and queue delay time. Finally, a quality attribute that has similar meaning
with execution time is transaction time but is used in a different context (transactional services).

Dependability

Dependability of a computing system is the ability to deliver service that can justifiably be trusted [9].
In the work of Avizienis et. al. [9], the phrase “justifiably trusted” is translated into three different
quality attributes and views: availability, reliability and security. In our opinion, security is orthogonal to
dependability and must be put in separate category because it provides the mechanisms that can possibly
avoid a specific type of failures from happening but it has nothing to do with the way the service has been
designed and built (with respect to its proper functioning). Moreover, security mechanisms can be broken
so even these faults cannot be prevented. Thus, we believe that dependability contains availability,
reliability, failure semantics [75] and robustness [117, 24, 76] with the latter two attributes describing:
a) the type of faults that can be exposed and how the service reacts to them (the first one) and b) the
capability of the service to behave in an acceptable way when these faults happen (the second one).
Another important remark is that besides availability, another quality attribute with similar meaning that
should be added in this quality group is accessibility [126] as it can characterize the case where a service
is available but not accessible to some users e.g. due to network connection problems.

Security

Services should be provided with the required security. With the increase in the use of services which are
delivered over the public Internet, there is a growing concern about security. The service provider may
apply different approaches and levels of providing security policy depending on the service requester.
Security for services [79, 117, 76] means providing authentication, authorization, confidentiality, trace-
ability/auditability, accountability, data encryption, and non-repudiation. Besides these classical quality
attributes, we have added two more, namely safety and integrity [9].

Data-related Quality

In specific application domains, services do not only accept input parameters but also input data and they
may also produce output data. For example, a credit card service can accept as input a data file describing
the user’s credit card information and can produce as output a data file describing details of the transaction
executed based on the functionality of the service. These input/output data are characterized by quality
attributes that have been traditionally used in the information and data quality domains like accuracy and
timeliness [24]. Except from traditional data quality attributes, we have added two more attributes that
characterize the way the service behaves with respect to the data it operates on or produces when it fails
(data policy) and the degree of validity of the data (data integrity [24]).

Configuration-related Quality

This quality group/category contains quality attributes that influence the way a service is configured
to function (service level [118]) or characterize if the promised functional and quality level has been
actually delivered during the service’s lifetime period (completeness, stability, reputation).

Network- and Infrastructure-related Quality

The network is usually used for sending requests and receiving (either instantaneously or continuously)
the results back and connects the service with the requesting user. Initially, most of the research ap-
proaches [118, 6, 79, 117] were neglecting this quality aspect but after the work published in [125], this
situation has changed [24, 76]. Network parameters influence the values of service quality parameters

External Final Version 1.0, Dated March 16, 2009 44

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

of other quality groups like response time and availability. We have identified four network quality pa-
rameters, that are common among all research approaches, namely: bandwidth, network delay, delay
variation and packet loss. Another entity that is different from the service or the user but it influences
directly or indirectly service quality is the infrastructure. This entity characterizes the service execu-
tion environment and can be characterized by many quality attributes. For the time-being, we have only
identified three of them, namely: server failure, guaranteed messaging requirements and security level.

Usability

Usability [29] collects all those quality attributes that can be measured subjectively according to user
feedback. It refers to the ease with which a user can learn to operate, prepare input for, and interpret the
output of the service. This quality group contains three composite (that can be further decomposed) and
two atomic quality attributes. The definition of these attributes is given in the table.

Quality of Use Context

Services can become adaptive if they can change their configuration, behaviour and appearance based on
the context, where “context is any information than can characterize the situation of the entity. An entity
is a person, place or object that is considered relevant to the interaction of a user and an application
including the user and the application themselves” [37]. So based on this definition, which is quite
general, context is any information that characterizes the service and its user, their physical and execution
environments (including the devices used) and the network that connects them. Context information has
also quality [53, 21, 120] as it depends on the way it is sensed or derived, the time that it is produced and
delivered, the level of detail and other factors. Thus, adaptive services should be designed and executed
taking also into account the quality of the context that is delivered to them so as to be able to make
rational and realistic decisions when to adapt and how. After reviewing the related literature in quality of
context, we have identified seven (7) quality attributes from which the most important ones are: precision
(how precise is the information), resolution (the level of detail), probability of correctness and freshness
(age of the information).

Cost

Some research approaches consider cost as a service attribute that is orthogonal to the service quality
because it is related to both functional and non-functional service attributes. However, the majority of
research approaches [117, 25, 126, 24, 76] considers cost as a service quality attribute. In addition, all
research approaches, at least the ones we have studied, use cost at the service selection phase in order
to select the best service according to its QoS and cost and user’s preferences and budget. Based on the
above reasons, we regard cost as a (composite) quality attribute (and group) consisting of three (atomic)
service attributes: cost model, fixed costs and variable costs. Actually, cost can be computed either from
all atomic cost attributes or only from the fixed costs attribute.

Other

This quality category has been created to contain various quality attributes of services that do not belong
to any other category. So the contained quality attributes may not be related to each other. For the time
being, only one quality attribute has been considered called supported standards [6, 79, 117, 126, 24, 76]
used to indicate if the service complies with standards or not. This attribute can affect the portability of
the service and its inter-operability with other services or applications.

External Final Version 1.0, Dated March 16, 2009 45

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

4.2 Quality Attributes

Table 4.1 provides a list of all quality attributes of the QRM and their definitions.

Name Parent Definition

Response time Performance The amount of time needed to complete a service request
from the user’s point of view

Latency Response time Time passed from the arrival of the service request until the
end of its execution/service

Throughput Performance The number of completed service requests over a time pe-
riod

Execution time Latency Time taken by a service to process its sequence of activities

Queue delay time Latency Wait time for a service request before it is actually executed

Transaction time Performance The time that passes while the service is completing one
complete transaction

Scalability Dependability The capability of increasing the computing capacity of ser-
vice provider’s computer system and system’s ability to pro-
cess more operations or transactions in a given period

Capacity Dependability Maximum number of concurrent requests that the service is
able to manage

Reliability Dependability The ability of a service to perform its required functions un-
der stated conditions for a specified period of time. It is the
overall measure of a service to maintain its service quality

Availability Dependability Availability of the service provided to customers. This is the
degree of availability of the service relative to a maximum
availability of 24 hours, seven days a week.

Continuous Dependability
availability It assesses the probability with which a client can access a

service an infinite number of times during a particular time
period. The service is expected not to fail and to retain all
state information during this time period

Accessibility Dependability It defines whether the service is capable of serving requests.
Note that while many services are ready to use, they might
not be accessible to specific clients. For instance, the con-
nection between the service and the client is problematic or
the service has already reached its threshold

Failure semantics Dependability They describe the general capabilities of a service to handle
failures. In particular, they describe the circumstances of
service failures and how a service reacts to failures

Operation semantics Failure semantics They describe how requests are handled in the case of fail-
ure. We can specify that issued requests are executed exact-
lyOnce, atLeastOnce, and atMostOnce

Failure masking Failure semantics It is used to describe what kind of failures a server may ex-
pose to its clients. A client must be able to detect and handle
any kind of exposed failure

Failure tolerance Failure semantics Ability of a service to provide its functionality to clients in
case of failures

External Final Version 1.0, Dated March 16, 2009 46

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

Name Parent Definition

Compensation Failure semantics Actions that are needed to undo the effects of a service in-
vocation when using stateful services. E.g., if a user orders
by mistake a different good from a catalogue, then compen-
sation includes to give the customer credit and to take back
the order

Exception handling Failure semantics Internal activities that are performed in the case of failures
during the execution of the service. E.g., if a database is
down, a service might swap to another database to use it for
persistency

Robustness/ Dependability
Flexibility Refers to the capability of the service to behave in an accept-

able way in anomalous or unexpected situations or when the
context changes

Adaptability Robustness/Flexibility It refers to the capability of the service to dynamically mod-
ify its state and behaviour according to the context. The
context may include user preferences, device and network
characteristics, available user peripherals, user location and
status (e.g. activity, mood), natural environment character-
istics and service and content descriptions and can be ex-
pressed in parameters that vary significantly over time and
space

Repairability Robustness/Flexibility The ability of a system and its repair actions to cope with
any unexpected situation

Self-healability Robustness/Flexibility It is the property that enables a system to perceive that it
is not operating correctly and, without human intervention,
make the necessary adjustments to restore itself to normality

Recoverability/ Robustness/Flexibility
Survivability The ability of the service to continue to fulfil its mission in

the presence of attacks, failures or accidents

Resistance Recoverability/
Survivability The ability of the service to repel attacks

Recognition/ Recoverability/
Observability/ Survivability
Diagnosability The capability of a system and its monitors to exhibit differ-

ent observables for different anticipated faulty situations

Recovery Recoverability/
Survivability The ability of the service to restore essential services during

attack and to recover full service after attack

Accuracy Dependability Defines the error rate produced by the service calculated on
the basis of the expected results

Safety Security The absence of catastrophic consequences on the users and
the environment

Authorization Security The process of determining, by evaluating applicable access
control information, whether a subject is allowed to have
the specified types of access to a particular resource like a
service. Usually, authorization is in the context of authenti-
cation. Once a subject is authenticated, it may be authorized
to perform different types of access

External Final Version 1.0, Dated March 16, 2009 47

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

Name Parent Definition

Authentication Security Authentication is the process of verifying that a potential
partner in a conversation is capable of representing a person
or organization

Confidentiality Security Absence of unauthorized disclosure of information

Integrity Security Absence of improper system state alterations including ac-
cidental or malicious alternation or removal of information

Accountability Security The state of being accountable; liability to be called on to
render an account; the obligation to bear the consequences
for failure to perform as expected

Traceability and Security
Auditability Capability of the service to be monitored and to generate in a

reliable and secure way events producing an audit trail from
which a sequence of events can be reconstructed and exam-
ined. Security events could include authentication events,
policy enforcement decisions, and others. The resulting au-
dit trail may be used to detect attacks, confirm compliance
with policy, deter abuse, or other purposes

Data encryption Security Refers to the algorithms adopted for protecting data from
malicious accesses. As one algorithm may be better than
another one, it also reflects the efficiency of the data encryp-
tion algorithms and mechanisms

Non-repudation Security Methods to prove to the data sender that data have been de-
livered, and to prove the sender’s identity to the recipient, so
that neither the sender nor the recipient can deny operations
of sending and receiving data

Data timeliness Data-related The property of information being able to arrive early or at
the right time

Data reliability Data-related Trustworthiness of data; this depends mainly on the reputa-
tion of the provider

Data accuracy Data-related It is the measure or degree of agreement between a data
value or set of values and a source assumed to be correct. It
is also defined as a qualitative assessment of freedom from
error, with a high assessment corresponding to a small error

Data completeness Data-related Represents the degree to which data values are present in
the attributes that require them. Completeness can refer to
both the temporal and spatial aspect of data quality, in the
sense that completeness measures how much data is avail-
able compared to how much data should be available

Data validity Data-related It is the degree to which data values satisfy acceptance re-
quirements of the validation criteria or fall within the respec-
tive domain of acceptable values. Validity criteria are often
based on ”expert opinion” and are generally viewed as ”rules
of thumb” although some validity criteria may be based on
established theory or scientific fact

Data policy Data-related When a service fails and then restarts, the client needs to
know if data returned by the service is still valid. To specify
this, we need to associate data policy with entities such as
return values or arguments

External Final Version 1.0, Dated March 16, 2009 48

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

Name Parent Definition

Data integrity Data-related Degree of validity of data. Data integrity can be compro-
mised by human errors, malicious attacks, intentional data
modification, transmission errors, system/software bugs or
viruses, or hardware malfunctions

Stability/ Configuration
Change cycle Management A measure of the frequency of change related to the service

in terms of its interface and / or implementation

Completeness Configuration Man-
agement

A measure of the difference between the specified set of fea-
tures (e.g. functions) and the implemented set of features

Reputation Configuration Man-
agement

The reputation of a provider is a measure of its trustworthi-
ness. It depends mainly on end users experience of using the
service of the provider

Level of Service Configuration Man-
agement

It is defined as the type of QoS commitment given to the ap-
plication or user. Two types are usually utilized: guaranteed
service or best-effort service

Bandwidth Network and
Infrastructure-related

Average of all the bandwidth samples gathered by probing
the network service during intervals of length T

Network delay Network and
Infrastructure-related

The number of milliseconds spent in transit when a client
and server exchange data. This includes the transit time for
all packets required for a request-response transaction

Delay variation Network and
Infrastructure-related

It is the variation in the inter-packet arrival time (leading to
gaps, known as jitter, between packets) as introduced by the
variable transmission delay over the network

Packet loss Network and
Infrastructure-related

Average of all packet loss samples gathered by probing the
network service during intervals of length T

Server failure Network and
Infrastructure-related

It describes the way in which a service can fail. That is,
whether it will halt indefinitely, restart in a well defined ini-
tialState, or restart rolledBack to a previous checkpoint

Guaranteed messag-
ing requirements

Network and
Infrastructure-related

The ability of the service to ensure the order and persistence
of the messages

Security level Network and
Infrastructure-related

Specifies whether security is ensured at message or transport
levels

Learnability Usability Capability of the service to enable the user to learn how to
apply/use it

Comprehensability Learnability Capability of the service to enable the user to understand
whether its functionality is suitable, and how it can be used
for particular tasks and under particular conditions of use

Content perceivability Comprehensability Capability of the content of the service to be used and un-
derstood by everyone, without any ambiguity or difficulty

Effectiveness Usability Accuracy and completeness with which users achieve spec-
ified goals

Operability Effectiveness Capability of the service to enable the user to operate on it

Navigability Effectiveness Capability of the service to provide a structure that can be
easily explored and allows users to access all available in-
formation and resources

Efficiency of use Usability Resources expended in relation to the accuracy and com-
pleteness with which users achieve their goals

External Final Version 1.0, Dated March 16, 2009 49

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

Name Parent Definition

Content accessibility Usability Ensuring that the content of the service can be navigated and
read by everyone, regardless of location, experience, or the
type of computer technology used

Satisfaction Usability Freedom from discomfort and positive attitudes towards the
use of the service

Aesthetic satisfaction Satisfaction

Attractiveness Aesthetic Satisfaction Capability of the service to be attractive to the user

Precision Quality of Use Con-
text

Precision describes how exactly the provided context in-
formation mirrors the reality. Precision is specified with
bounds. A GPS-receiver, for example, allows for a preci-
sion of about 4 meters, while positioning users via a cellular
network like GSM reaches precision of up to 500 meters in
urban areas

Resolution Quality of Use Con-
text

Resolution denotes the granularity of information. Consider
a context provider announcing that the temperature in a cer-
tain room is 17 degrees Celsius. While this is on average
true, there can be a hot toaster in one of the room’s corners.
But the context provider is incapable of offering information
at a finer granularity due to restricted number of thermome-
ters

Spatial resolution Resolution It is the precision with which the physical area, to which an
instance of context information is applicable, is expressed.
When context information describes one or more aspects of
physical space, it is often implied that it is a reasonable esti-
mate with regards to spatial resolution

Temporal Resolution It is the period of time to which a single instance of context
information is applicable. Like space, a context also has a
breadth of time to which it is applicable. Temporal resolu-
tion shows the best possible approximation of time at which
a context was determined

Probability of correct-
ness

Quality of Use Con-
text

It is the probability that an instance of context accurately
represents the corresponding real world situation, as as-
sessed by the context source, at the time it was determined.
There are several reasons due to which context information
being provided may be unintentionally incorrect. This prob-
ability refers to the confidence of the source that the pro-
vided context information was accurate at the moment it was
determined

Repeatability Probability of correct-
ness

It is one of the main ways to measure the “probability of
correctness” of a context source and refers to the stability of
the measure of specific context information

Up-to-
dateness/freshness

Context It describes the age of context information. In general, up-
to-dateness will be specified by adding a timestamp to con-
text information. Very often, it would be more interesting
to know how well a formerly provided context information
still accurately describes the actual situation

External Final Version 1.0, Dated March 16, 2009 50

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

Name Parent Definition

Trust-worthiness Quality of Use Con-
text

Trust-worthiness also describes how likely it is that provided
information is correct. In comparison to the probability of
correctness, however, trust-worthiness is used by the con-
text provider to rate the quality of the actor from which the
context provider originally received the context information

Coverage Quality of Use Con-
text

The amount of the potentially sensed context about which
information is delivered

Cost model Cost Defines a set of functions that transform resources (services)
into costs

Fixed costs Cost Costs that constitute a fixed amount of the overall costs for
the provision of a service

Variable costs Cost Costs that change during the provision of a service in addi-
tion to fixed costs

Supported standards Other A measure of whether the service complies with standards
(e.g. industry specific standards). This can affect the porta-
bility of the service and interoperability of the service with
others.

Table 4.1: List of Consolidated Service Quality Attributes

4.3 Graphical Representation of the Model

Figure provides a graphical presentation of the quality categories and the quality attributes of the S-Cube
QRM, as well as their taxonomical relationships.

External Final Version 1.0, Dated March 16, 2009 51

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

Quality

Performance

Dependability

Security Data-related

Usability

Configuration &
Management

Quality of Use
Context Cost

Other

Response time

Latency

Execution time Queue delay time

ThroughputTransaction time

Scalability Capacity

Availability

Reliability Accessibility

Continuous
availability

Failure semantics

Operation
semantics

Failure masking

Compensation

Exception
handling

Robustness/
Flexibility

Adaptability

Repairability

Self-healability

Recoverability

Resistance Recognition/
ObservabilityRecovery

Accuracy

Safety

Authentication

Authorization

Confidentiality Integrity

Accountability Traceability/
Auditability

Data encryption Non-repudation

Data timeliness

Data reliability

Data accuracy

Data
completeness

Data validity

Data policy Data integrity

Stability/Change
cycle

Completeness

Reputation

Level of Service

Learnability

Comprehensability

Content
Perceivability

Effectiveness

Operability Navigability

Efficiency of Use Content
Accessibility

Satisfaction

Aesthetic
Satisfaction

Attractiveness

Precision

Resolution

Spatial resolutionTemporal
resolution

Probability of
Correctness

Repeatability

Up-to-dateness/
Freshness

Trust-worthiness

Coverage

Cost model

Fixed costs

Variable costs

Supported
Standards

Figure 4.1: S-Cube Quality Reference Model (QRM)

External Final Version 1.0, Dated March 16, 2009 52

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

Chapter 5

Conclusions

The S-Cube Quality Reference Model (QRM), devised in this deliverable, constitutes a first joint under-
standing of key quality attributes relevant for services and service-based applications, which have been
agreed between the S-Cube disciplines software engineering, business process management, service-
oriented computing and grid computing. The key definitions of the QRM have been contributed to the
S-Cube Knowledge Model, where they can be accessed by a broader community of researchers.

A quality model of a service (and its infrastructure), like the QRM, is the first step for defining and
enforcing service quality. The second and more difficult step is to associate the quality categories and
attributes with each other, modelling in this way their quantitative and qualitative dependencies. This
step is essential if we want to be able to derive more information from measurements or to evaluate the
correctness of these measurements or of quality predictions.

The forthcoming deliverable CD-JRA-1.3.3 ”Initial concepts for specifying end-to-end quality char-
acteristics and negotiating SLAs” will thus set out to devise a rich and extensible quality definition
language (e.g., in the form of an extensible meta-model) that will include all relevant concepts and their
relationships and inter-dependencies required for defining and monitoring end-to-end quality character-
istics and negotiating SLAs.

External Final Version 1.0, Dated March 16, 2009 53

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

Bibliography

[1] A. Ankolekar et al. DAML-S: Web Service Description for the Semantic Web. In Proc. ISWC’02,
number 2342 in LNCS, pages 348–363. Springer, 2002.

[2] Jan Øyvind Aagedal and Earl F. Ecklund Jr. Modelling QoS: Towards a UML Profile. In Jean-
Marc Jézéquel, Heinrich Hußmann, and Stephen Cook, editors, UML 2002 - The Unified Modeling
Language, 5th International Conference, Dresden, Germany, September 30 - October 4, 2002,
Proceedings, volume 2460 of Lecture Notes in Computer Science, pages 275–289. Springer, 2002.

[3] E. Albert, P. Arenas, S. Genaim, G. Puebla, D. Ramı́rez, and D. Zanardini. The COSTA cost and
termination analyzer for java bytecode and its web interface (tool demo). In Anna Philippou,
editor, 22nd European Conference on Object-Oriented Programming, July 2008.

[4] Elvira Albert, Puri Arenas, Samir Genaim, and German Puebla. Automatic Inference of Upper
Bounds for Recurrence Relations in Cost Analysis. In Marı́a Alpuente and Germán Vidal, editors,
Static Analysis, 15th International Symposium, SAS 2008, Valencia, Spain, July 15-17, 2008, Pro-
ceedings, volume 5079 of Lecture Notes in Computer Science, pages 221–237. Springer-Verlag,
July 2008.

[5] ALICE Job Monitoring with MonALISA. http://pcalimonitor.cern.ch/map.jsp.

[6] M. Anbazhagan and A. Nagarajan. Understanding quality of service for web services. IBM
Developerworks website, January 2002.

[7] J. Asensio and V. Villagr. A UML Profile for QoS Management. In Information Specification in
Distributed Object-based Applications. Proceedings of the 7th Workshop HP Open View Univer-
sity Association, June 12.-14., 2000.

[8] iSGTW Feature - AssessGrid: taking the gamble out of Grid decisions. http://www.isgtw.
org/?pid=1000509.

[9] Algirdas Avizienis, Jean-Clause Laprie, and Brian Randell. Fundamental concepts of dependabil-
ity. Technical Report 0100, Computer Science Department, University of California, Los Angeles,
LA, USA, 2001.

[10] B. Beckles. Re-Factoring Grid Computing for Usability. In S.J. Cox, editor, Proceedings of the
UK e-Science All Hands Meeting 2005, pages 75–82, 2005. http://www.allhands.org.
uk/2005/proceedings/papers/565.pdf.

[11] M-E. Bègin. An EGEE Comparative Study: Grids and Clouds — Evolution or Revolution? EGEE
Technical Report EGEE-Grid-Cloud-v1.1.doc, CERN, June 2008. https://edms.cern.
ch/document/925013/.

[12] B. Benatallah, F. Casati, D. Grigori, H. R. M. Nezhad, and F. Toumani. Developing Adapters
for Web Services Integration. In Advanced Information Systems Engineering, 17th International
Conference, CAiSE 2005, Porto, Portugal, June 13-17, 2005, Proceedings, pages 415–429, 2005.

External Final Version 1.0, Dated March 16, 2009 54

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

[13] Boualem Benatallah, Fabio Casati, Daniela Grigori, Hamid R. Motahari Nezhad, and Farouk
Toumani. Developing adapters for web services integration. In CAiSE, pages 415–429, 2005.

[14] S. Bernardi and D. C. Petriu. Comparing two UML Profiles for Nonfunctional Requirements
Annotations: the SPT and QoS Profiles. In Specification and Validation of UML models for Real
Time and Embedded Systems (SVERTS), 11. Oktober 2004, Lissabon, Portugal, 2004.

[15] A. Bertolino, E. Marchetti, and R. Mirandola. Real-Time UML-Based Performance Engineering
to Aid Managers Decisions in Multi-Project Planning. In Proceedings of the 3rd International
Workshop on Software and Performance (WOSP ’02); Rome, Italy; July 24–26, 2002, pages 251–
261, 2002.

[16] A. Beugnard, J-M. Jézéquel, N. Plouzeau, and D. Watkins. Making components contract aware.
Computer, 32(7):38–45, July 1999.

[17] Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. Korat: automated testing based
on java predicates. In Proceedings of the 2002 ACM SIGSOFT international symposium on Soft-
ware testing and analysis, 2002.

[18] BPEL v1.1. www.ibm.com/developerworks/library/ws-bpel.

[19] J. Broberg, S. Venguopal, and R. Buyya. Market-oriented Grids and Utility Computing: The
State-of-the-art and Future Directions. Journal of Grid Computing, 2008. In Press. http://
www.gridbus.org/papers/MarketGridUtilityComp2001_2007.pdf.

[20] Antonio Brogi and Razvan Popescu. Automated generation of bpel adapters. In ICSOC, pages
27–39, 2006.

[21] Thomas Buchholz, Axel Küpper, and Michael Schiffers. Quality of context: What it is and why
we need it. In 10th International Workshop of the HP OpenView University Association (HPOVUA
2003), Geneva, Switzerland, 2003.

[22] Peter Buneman, Wenfei Fan, Jérôme Siméon, and Scott Weinstein. Constraints for Semistructured
Data and XML. In ACM Sigmod Record, volume 30, pages 47–54, March 2001.

[23] R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, and I. Brandic. Cloud Computing and Emerg-
ing IT Platforms: Vision, Hype, and Reality for Delivering Computing as the 5th Utility. Grid
Computing and Distributed Systems Laboratory Technical Report GRIDS-TR-2008-13, The Uni-
versity of Melbourne, Australia, September 2008. http://www.gridbus.org/reports/
CloudITPlatforms2008.pdf.

[24] Cinzia Cappiello. The quality registry. In Barbara Pernici, editor, Mobile Information Systems –
Infrastructure and Design for Adaptivity and Flexibility, pages 307–317. Springer-Verlag, 2006.

[25] Jorge Cardoso, Amit P. Sheth, John A. Miller, Jonathan Arnold, and Krys Kochut. Quality of
service for workflows and web service processes. Journal of Web Semantics, 1(3):281–308, 2004.

[26] N. S. Caswell, C. Nikolaou, J. Sairamesh, M. Bitsaki, G. D. Koutras, and G. Iacovidis. Estimating
value in service systems: A case study of a repair service system. IBM Systems Journal, 47(1):87–
100, 2008.

[27] J Chin and P.V. Covney. Towards Tractable Toolkits for the Grid: A Plea for Lightweight, Usable
Middleware. UK e-Science Technical Report Series 2004-01, National e-Science Centre, 2004.
http://www.nesc.ac.uk/technical_papers/UKeS-2004-01.pdf.

External Final Version 1.0, Dated March 16, 2009 55

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

[28] Rance Cleaveland and Scott A. Smolka. Priorities in process algebra. Information and Computa-
tion, 87:58–77, 1990.

[29] International Standards Organisation & International Electrotechnical Commission. International
Standard ISO 9241-11 Ergonomic requirements for office work with visual display terminals
(VDTs) Part 11: Guidance on Usability. Geneve, Switzerland, 1998.

[30] The Condor Project Homepage. http://www.cs.wisc.edu/condor/.

[31] Condor v7.0 Checkpoint Mechanism. http://www.cs.wisc.edu/condor/manual/
v7.0/4_2Condor_s_Checkpoint.html.

[32] J. Correas. Analysis and Verification of Modular Programs. PhD thesis, Universidad Politécnica
de Madrid (UPM), Facultad Informática UPM, 28660-Boadilla del Monte, Madrid-Spain, June
2008.

[33] Vittorio Cortellessa and Antonio Pompei. Towards a UML profile for QoS: a contribution in the re-
liability domain. In Proceedings of the 4th international workshop on Software and performance,
14.-16. Januar 2004, pages 197–206, 2004.

[34] F. Curbera. Components contracts in Service-Oriented architectures. IEEE Computer, 40(11):74–
80, 2007.

[35] M.A. de Miguel. General framework for the description of QoS in UML. In Sixth IEEE Inter-
national Symposium on Object-Oriented Real-Time Distributed Computing, pages 61–68, May
2003.

[36] N. Delgado, A. Q. Gates, and S. Roach. A Taxonomy and Catalog of Runtime Software-Fault
Monitoring Tools. IEEE Transactions on Softwware Engineering, 30(12):859 – 872, 2004.

[37] A.K. Dey. Architectural support for building context-aware applications. Phd thesis, College of
Computing, Georgia Institute of Technology, December 2000.

[38] Zertifizierungsrichtlinie der DFN-PKI v2.1, December 2006. http://www.pki.dfn.de/
fileadmin/PKI/DFN-PKI_CP_v21.pdf.

[39] Elisabetta Di Nitto, Carlo Ghezzi, Andreas Metzger, Mike Papazoglou, and Klaus Pohl. A journey
to highly dynamic, self-adaptive service-based applications. Automated Software Engineering,
15(3-4):313–341, 2008.

[40] E. Dimitrov, R. Dumke, and A. Schmietendorf. UML-Based Performance Engineering Possibili-
ties and Techniques. IEEE Software, 19(1):74–83, 2002.

[41] The European DataGrid Project. http://eu-datagrid.web.cern.ch/eu-dataGrid/
Intranet_Home.htm.

[42] ESLEA - Exploitation of Switched Lightpaths for eScience Applications. http://www.
eslea.uklight.ac.uk/.

[43] Huáscar Espinoza, Hubert Dubois, Sébastien Gérard, Julio L. Medina Pasaje, Dorina C. Petriu,
and C. Murray Woodside. Annotating UML Models with Non-functional Properties for Quanti-
tative Analysis. In Jean-Michel Bruel, editor, MoDELS Satellite Events, volume 3844 of Lecture
Notes in Computer Science, pages 79–90. Springer, 2005.

[44] R. W. Floyd. Assigning meaning to programs. In J. T. Schwartz, editor, Mathematical aspects of
computer science: Proc. American Mathematics Soc. symposia, volume 19, pages 19–31, Provi-
dence RI, 1967. American Mathematical Society.

External Final Version 1.0, Dated March 16, 2009 56

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

[45] M. Ford. Service Level Definition for the University of Manchester Data Node on the UK Na-
tional Grid Service (NGS), August 2005. http://www.ngs.ac.uk/sites/manc/NGS_
Manchester_cluster_SLD.pdf.

[46] S. Frlund and J. Koistinen. QML: A Language for Quality of Service Specification. Technical
Report Technical Report HPL-98-10, Hewlett-Packard, 1998.

[47] S. Frlund and J. Koistinen. Quality of Service Specification in Distributed Object Systems. Dis-
tributed Systems Engineering Journal, 5(4):179–202, 1998.

[48] Svend Frølund and Jari Koistinen. Quality of service specification in distributed object systems
design. In 4th USENIX Conference on Object-Oriented Technologies and Systems (COOTS), April
27-30, 1998, Eldorado Hotel, Santa Fe, New Mexico, USA, pages 1–18. USENIX, 1998.

[49] Stefano Gallotti, Carlo Ghezzi, Raffaela Mirandola, and Giordano Tamburrelli. Quality prediction
of service compositions through probabilistic model checking. In Steffen Becker, Frantisek Plasil,
and Ralf Reussner, editors, Quality of Software Architectures. Models and Architectures, 4th Inter-
national Conference on the Quality of Software-Architectures, QoSA 2008, Karlsruhe, Germany,
October 14-17, 2008. Proceedings, volume 5281 of Lecture Notes in Computer Science, pages
119–134. Springer, 2008.

[50] The Ganglia Monitoring System. http://ganglia.info/.

[51] Ganglia: NGS Grid Report. http://ganglia.ngs.rl.ac.uk.

[52] GT Information Serivces: Monitoring & Discovery System (MDS). http://www.globus.
org/toolkit/mds/.

[53] Philip D. Gray and Daniel Salber. Modelling and using sensed context information in the design
of interactive applications. In EHCI ’01: Proceedings of the 8th IFIP International Conference on
Engineering for Human-Computer Interaction, pages 317–336, Toronto, Canada, 2001. Springer-
Verlag.

[54] The Gridsphere Portal Framework. http://www.gridsphere.org/gridsphere/
gridsphere.

[55] Object Management Group. UML 1.5 Object Constraint Language Specification, March 2003.
Version 1.5.

[56] G. P. Gu and D. C. Petriu. Early Evaluation of Software Performance Based on the UML Per-
formance Profile. In roceedings of the 2003 Conference of the Centre for Advanced Studies,
Conference on Collaborative Research, pages 66–79, 2003.

[57] D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer Program-
ming, 8(3):231–274, June 1987.

[58] T. Harmer. Service Level Definition for the Belfast e-Science Centre Container Node on the
National Grid Service (v0.4), April 2007. http://www.ngs.ac.uk/sites/belfast/
BeSCNGSSLDv0.4.pdf.

[59] Julia Hielscher, Raman Kazhamiakin, Andreas Metzger, and Marco Pistore. A framework for
proactive self-adaptation of service-based applications based on online testing. In Towards a
Service-Based Internet. Proceedings ServiceWave 2008 Conference. Springer, LNCS, 10-13 De-
cember 2008.

External Final Version 1.0, Dated March 16, 2009 57

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

[60] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the ACM,
12(10), 1969.

[61] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[62] Horace Scheduling Policy - Research Comptuing Services (The University of Manchester).
http://www.rcs.manchester.ac.uk/services/computational/Horace/
HoraceUsage/HoraceScheduling.

[63] P. Hoschka. An introduction to the synchronized multimedia integration language. IEEE Multi-
Media, 5(4):84–88, 1998.

[64] Haruo Hosoya and Benjamin C. Pierce. XDuce: A Statically Typed XML Processing Language.
ACM Transactions on Internet Technology, 3(2):117–148, May 2003.

[65] Haruo Hosoya, Jérôme Vouillon, and Benjamin C. Pierce. Regular expression types for xml. ACM
Transactions on Programming Languages and Systems, 27(1):46–90, january 2005.

[66] HPCx - Data Backup Policies. http://www.hpcx.ac.uk/services/policies/
data_backup.html.

[67] HPC4U - Introducing Quality of Service for GRIDS. http://www.hpc4u.org/.

[68] HPC4U Project. HPC4U - Negotiating on QoS Aspects. Deliverable D1.2 v1.3, May 2005.
www.hpc4u.eu/docs/HPC4U_D12_NegotiatingQoS.pdf.

[69] ISO. IS8807 : Information Processing Systems - Open System Interconnection - LOTOS - A formal
description technique based on the temporal ordering of observational behavior. ISO, February
1989.

[70] Software Engineering - Product Quality - Part 1: Quality Model. International Standard, 2001.
ISO/IEC 9126-1.

[71] ITU. Specification and Description Language (SDL). ITU-T Recommendation no Z.100, Novem-
ber 1999.

[72] J. Jensen. The UK e-Science Certification Authority. In S.J. Cox, editor, Proceedings of the UK
e-Science All Hands Meeting 2003, August 2003. http://www.gridpp.ac.uk/papers/
ah03_089.pdf.

[73] Robert Kaplan. The Balanced Scorecard. Harvard Business School Press, Boston, 1996.

[74] J. Koistinen. Dimensions for Reliability Contracts in Distributed Object Systems. Technical
Report Technical report HPL-97-119, Hewlett Packard, 1997.

[75] H. Kopetz. Real-Time Systems: Design Principles for Distributed Embedded Applications.
Kluwer Academic Publishers, 1997.

[76] Kyriakos Kritikos. Qos-based web service description and discovery. Phd thesis, Computer Sci-
ence Department, University of Crete, Heraklion, Greece, 2008.

[77] Worldwide LHC Computing Grid. http://lcg.web.cern.ch/LCG/.

[78] G. T. Leavens, K. Rustan M. Leino, E. Poll, C. Ruby, and B. Jacobs. JML: notations and tools
supporting detailed design in Java. In OOPSLA 2000 Companion, Minneapolis, Minnesota, pages
105–106, October 2000.

External Final Version 1.0, Dated March 16, 2009 58

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

[79] KangChan Lee, JongHong Jeon, WonSeok Lee, Seong-Ho Jeong, and Sang-Won Park. Qos for
web services: Requirements and possible approaches. World Wide Web Consortium (W3C) note,
November 2003.

[80] K. R. M. Leino and P. Müller. Modular verification of static class invariants. In J. Fitzgerald,
I. Hayes, and A. Tarlecki, editors, Formal Methods (FM), volume 3582 of Lecture Notes in Com-
puter Science, pages 26–42. Springer-Verlag, 2005.

[81] Francesco Logozzo. Cibai: An abstract interpretation-based static analyzer for modular analysis
and verification of java classes. In VMCAI’07, number 4349 in LNCS. Springer, Jan 2007.

[82] E.N. Lorenz. The Essence of Chaos. University of Washington Press, 1993. ISBN 978-
0295975146.

[83] N. A. Lynch and M. R. Tuttle. An introduction to input/output automata. CWI Quarterly,
2(3):219–246, 1989.

[84] J. MacLaren, M. McKeown, and S. Pickles. Co-Allocation, Fault Tolerance and Grid Comput-
ing. In S.J. Cox, editor, Proceedings of the UK e-Science All Hands Meeting 2006, pages 155–
162, September 2006. The HARC software is available from http://www.cct.lsu.edu/

˜maclaren/HARC/.

[85] J. Magee and J. Kramer. Concurrency. State Models and Java Programs. wiley, 1999.

[86] N. Mercouroff and A. Parhar. Tina computational modelling concepts and object definition lan-
guage. In IS&N ’97: Proceedings of the Fourth International Conference on Intelligence and
Services in Networks, pages 15–24, London, UK, 1997. Springer-Verlag. ISBN: 3-540-63135-6.

[87] B. Meyer. Applying “design by contract”. Computer, 25(10), October 1992.

[88] B. Meyer. Eiffel the language Prentice Hall object-oriented series. Prentice Hall, 1992.

[89] Nikola Milanovic. Contract-based Web Service Composition. PhD thesis, Humboldt University
of Berlin, 2006.

[90] R. Milner. A calculus of communicating systems. Lecture Notes in Computer Science, 92, 1980.

[91] J. Navas, M. Méndez-Lojo, and M. Hermenegildo. Customizable Resource Usage Analysis for
Java Bytecode. Technical Report UNM TR-CS-2008-02 - CLIP1/2008.0, University of New Mex-
ico, Department of Computer Science, UNM, January 2008. Submitted for publication.

[92] J. Navas, E. Mera, P. López-Garcı́a, and M. Hermenegildo. User-Definable Resource Bounds
Analysis for Logic Programs. In International Conference on Logic Programming (ICLP), volume
4670 of LNCS, pages 348–363. Springer-Verlag, September 2007.

[93] The National Grid Service. http://www.grid-support.ac.uk/.

[94] National Grid Service: Inca 2 Grid Monitoring. http://inca2.ngs.ac.uk/
conformance.shtml.

[95] National Grid Service: Minimum Software Stack Tests. http://inca2.ngs.ac.uk/mss.
shtml.

[96] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. Springer, 2005. Second
Ed.

[97] Nordugrid. http://www.nordugrid.org/.

External Final Version 1.0, Dated March 16, 2009 59

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

[98] NorduGrid ARC Grid Monitor. http://www.nordugrid.org/monitor/.

[99] Object Management Group. UML 2.0 Superstructure Specification. OMG document: ptc/03-08-
02, 2003.

[100] Object Management Group. UML Profile for Schedulability, Performance, and Time Specifica-
tion. OMG document: formal/03-09-01, 2003.

[101] Object Management Group. UML Testing Profile. OMG document: formal/05-07-07, 2005.

[102] Object Managements Group. UML Profile for Modeling Quality of Service and Fault Tolerance
Characteristics and Mechanisms, Version 1.0. formal/2006-05-02, 2006.

[103] ObjectManagement Group. UML 2.0 Infrastructure Specification. OMG document: ptc/03-09-15,
2003.

[104] P. Oliver, A. Richards, and S. Young. NGS Minimum Software Stack. National Grid Service
Working Document, March 2006. https://www.ngs.ac.uk/man/documents/NGS_
Minimum_software_stack.pdf.

[105] OMG. The Object Constraint Language Specification 2.0, OMG Document: ad/03- 01-07, 2007.

[106] OpenCCS - Computing Center Software. https://www.openccs.eu/core/.

[107] Oxford University Computing Services. Oxford Node on the UK National Grid Service
(NGS) Service Level Description (v4.0), May 2004. http://e-science.ox.ac.uk/ngs/
Oxford_SLD_v4.pdf.

[108] Michael P. Papazoglou and Willem-Jan Van Den Heuvel. Service-oriented design and develop-
ment methodology. Int. J. Web Eng. Technol., 2(4):412–442, 2006.

[109] Mike Papazoglou and Klaus Pohl. Report on longer term research challenges in software and ser-
vices. Results from two workshops held at the European Commission premises at 8th of November
2007 and 28th and 29th of January 2008, European Commission, www.cordis.lu, 2008. With con-
tributions from Boniface M, Ceri S, Hermenegildo M, Inverardi P, Leymann F, Maiden N, Metzger
A, Priol T.

[110] Barbara Pernici and Andreas Metzger. Survey of quality related aspects relevant for SBAs. De-
liverable PO-JRA-1.3.1, S-Cube, 2008.

[111] J. L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 1981. ISBN: 0136619835.

[112] P. Pietrzak, J. Correas, G. Puebla, and M. Hermenegildo. Context-Sensitive Multivariant Asser-
tion Checking in Modular Programs. In 13th International Conference on Logic for Program-
ming Artificial Intelligence and Reasoning (LPAR’06), number 4246 in LNCS, pages 392–406.
Springer-Verlag, November 2006.

[113] Marco Pistore and Paolo Traverso. Assumption-Based Composition and Monitoring of Web Ser-
vices. In Luciano Baresi and Elisabetta Di Nitto, editors, Test and Analysis of Web Services, pages
307–335. Springer, 2007.

[114] Shankar R. Ponnekanti and Armando Fox. Interoperability among independently evolving web
services. In Middleware ’04: Proceedings of the 5th ACM/IFIP/USENIX international conference
on Middleware, pages 331–351, New York, NY, USA, 2004. Springer-Verlag New York, Inc.

External Final Version 1.0, Dated March 16, 2009 60

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.2

[115] R. R. Mach, R. Lepro-Metz, S. Jackson, and L. McGinnis. Usage Record Format Recommenda-
tion GFD-R-P.098. Open Grid Forum Recommendation, February 2007.

[116] P. Radha Krishna, K. Karlapalem, and D.K.W. Chiu. An EREC framework for e-contract model-
ing, enactment, and monitoring. Data Knowl. Eng., 51:31–58, 2004.

[117] Shuping Ran. A model for web services discovery with qos. SIGecom Exch., 4(1):1–10, 2003.

[118] Bikash Sabata, Saurav Chatterjee, Michael Davis, Jaroslaw J. Sydir, and Thomas F. Lawrence.
Taxomomy of qos specifications. In WORDS ’97: Proceedings of the 3rd Workshop on Object-
Oriented Real-Time Dependable Systems - (WORDS ’97), pages 100–107, Washington, DC, USA,
1997. IEEE Computer Society.

[119] Sagar Sen, Benoit Baudry, and Jean-Marie Mottu. On combining mullti-formalism knowledge to
select test models for model transformaion testing. In IEEE International Conference on Software
Testing, Lillehammer, Norway, April 2008.

[120] K. Sheikh, M. Wegdam, and M. J. van Sinderen. Quality-of-context and its use for protecting
privacy in context aware systems. Journal of Software, 3(3):83–93, March 2008.

[121] Synopsys Inc., http://www.systemc.org. SystemC v2.0.1 Users Guide, June 2002.

[122] Taverna Project Website. http://taverna.sourceforge.net/.

[123] M.H. ter Beek, A. Bucchiarone, and S. Gnesi. Formal Methods for Service Composition. Annals
of Mathematics, Computing and Teleinformatics, 1(5):1 – 10, 2007.

[124] Teragrid. http://www.teragrid.org/.

[125] M. Tian, A. Gramm, M. Nabulsi, H. Ritter, J. Schiller, and T. Voigt. Qos integration in web
services. Gesellschaft fur Informatik DWS 2003, Doktorandenworkshop Technologien und An-
wendungen von XML, October 2003.

[126] Hong-Linh Truong, Robert Samborski, and Thomas Fahringer. Towards a framework for moni-
toring and analyzing qos metrics of grid services. In International Conference on e-Science and
Grid Computing, Amsterdam, The Netherlands, December 2006. IEEE Computer Society Press.

[127] JANET Lightpath. http://www.ja.net/services/lightpath/index.html.

[128] A. Usai. Grid Certificates for Users in Switzerland. https://www.switch.ch/pki/
meetings/2008/switchpki_grid_certificates.pdf.

[129] J. Vonk and P. Grefen. Cross-organizational transaction support for E-services in virtual enter-
prises. Distrib. Parallel. Dat., 14:137–172, 2003.

[130] L. G. Williams and C.U. Smith. Performance Solutions A Practical Guide to Creating Responsive,
Scalable Software. Addison-Wesley, 2002.

[131] WSCDL v1.0. www.w3.org/TR/2004/WD-ws-cdl-10-20040427.

[132] WSMO working group. www.wsmo.org.

[133] S. Zanikolas and R. Sakellariou. A Taxonomy of Grid Monitoring Systems. Future Gen-
eration Computer Systems, 21(2005):163–188, July 2004. http://www.cs.man.ac.uk/

˜zanikols/fgcs05.pdf.

External Final Version 1.0, Dated March 16, 2009 61

