
Grant Agreement N° 215483

Copyright © 2008 by the S-CUBE consortium – All rights reserved.

The research leading to these results has received funding from the European Community's Seventh Framework Programme
[FP7/2007-2013] under grant agreement n° 215483 (S-Cube).

File name: JRA 118 v1.04.doc

Title: Validated SBA engineering principles exploiting HCI and contextual
knowledge

Authors: Tilburg, CITY, FBK, Lero, POLIMI, TUW, USTUTT, VUA

Editor: A. Kounkou and N. Maiden (CITY)

Reviewers: Fabrizio Silvestri (CNR)

 Dominik Meil (Munster)

Identifier: Deliverable # CD-JRA-1.1.8

Type: Deliverable

Version: 1.0

Date: 29/02/2012

Status: Final

Class: External

Management Summary

In this deliverable, we present research performed in the last year on SBA engineering principles

exploiting human-computer interaction and contextual knowledge; the work reported here builds upon

and consolidates previous work based on validation results. Some of the presented contributions use and

validate the S-Cube lifecycle model in the context of cloud computing. Other contributions focus on

service-based application adaptation and evolution through context modelling or a change management

methodology. Further contributions focus on practices and challenges of service-oriented architecture

migration in industry and contrast it with academic practices. Finally, some research contributions

investigate challenges in global software development and the related opportunities and relationship that

exist with service-oriented architectures.

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 2

Members of the S-CUBE consortium:

University of Duisburg-Essen (Coordinator) Germany

Tilburg University Netherlands

City University London U.K.

Consiglio Nazionale delle Ricerche Italy

Center for Scientific and Technological Research Italy

The French National Institute for Research in Computer Science and Control France

Lero - The Irish Software Engineering Research Centre Ireland

Politecnico di Milano Italy

MTA SZTAKI – Computer and Automation Research Institute Hungary

Vienna University of Technology Austria

Université Claude Bernard Lyon France

University of Crete Greece

Universidad Politécnica de Madrid Spain

University of Stuttgart Germany

University of Hamburg Germany

Vrije Universiteit Amsterdam Netherlands

Published S-CUBE documents
All public S-Cube deliverables are available from the S-Cube Web Portal at the following URL: http://www.s-

cube-network.eu/results/deliverables/

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 3

The S-CUBE Deliverable Series

Vision and Objectives of S-CUBE

 The Software Services and Systems Network (S-Cube) will establish a unified,

multidisciplinary, vibrant research community which will enable Europe to lead the software-

services revolution, helping shape the software-service based Internet which is the backbone

of our future interactive society.

By integrating diverse research communities, S-Cube intends to achieve world-wide scientific

excellence in a field that is critical for European competitiveness. S-Cube will accomplish its

aims by meeting the following objectives:

• Re-aligning, re-shaping and integrating research agendas of key European players

from diverse research areas and by synthesizing and integrating diversified

knowledge, thereby establishing a long-lasting foundation for steering research and for

achieving innovation at the highest level.

• Inaugurating a Europe-wide common program of education and training for

researchers and industry thereby creating a common culture that will have a profound

impact on the future of the field.

• Establishing a pro-active mobility plan to enable cross-fertilisation and thereby

fostering the integration of research communities and the establishment of a common

software services research culture.

• Establishing trust relationships with industry via European Technology Platforms

(specifically NESSI) to achieve a catalytic effect in shaping European research,

strengthening industrial competitiveness and addressing main societal challenges.

• Defining a broader research vision and perspective that will shape the software-service

based Internet of the future and will accelerate economic growth and improve the

living conditions of European citizens.

S-Cube will produce an integrated research community of international reputation and

acclaim that will help define the future shape of the field of software services which is of

critical for European competitiveness. S-Cube will provide service engineering methodologies

which facilitate the development, deployment and adjustment of sophisticated hybrid service-

based systems that cannot be addressed with today’s limited software engineering approaches.

S-Cube will further introduce an advanced training program for researchers and practitioners.

Finally, S-Cube intends to bring strategic added value to European industry by using industry

best-practice models and by implementing research results into pilot business cases and

prototype systems.

S-CUBE materials are available from URL: http://www.s-cube-network.eu/

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 4

Table of Contents

1 Introduction...7
1.1 Overview of the deliverable.. 7
1.2 Relationships with other work packages ... 10

2 Research contributions...10
2.1 Exploiting the S-Cube life-cycle .. 10
2.2 Supporting SBA evolution and adaptation.. 11
2.3 Supporting global software development .. 14
2.4 SOA migration in practice ... 19

3 Conclusions..21

Appendix A: Using a Lifecycle Model for Developing and Executing Real-Time Online
Applications on Clouds ..23

Appendix B: Addressing highly dynamic changes in service-oriented systems: Towards agile
evolution and adaptation ...32

Appendix C: Managing evolving services ...44

Appendix D: A Variable Context Model for Adaptable Service-Based Applications51

Appendix F: Going Global with Agile Service Networks ..82

Appendix G: On the Nature of GSE Organizational Social Structures: an Empirical Study.88

Appendix H: A Survey of SOA Migration in Industry..99

Appendix I: The How and Why of SOA Migration in Industry...106

Appendix J: Exloiting Codified User Task Knowledge to Discover Services..........................119

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 5

Table of illustrations
Figure 1. ASNs for GSD ..17
Figure 2. OSS types: project team aggregates..18
Figure 3. Research context ...19
Figure 4. Three view Strategy Representation. ..21

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 6

List of acronyms
A&M Adaptation and Monitoring
ASN Agile Service Network
BPEL Business Process Execution Language
BPM Business Process Management
CEP Complex Event Processing
EAI Enterprise Application Integration
GSE Global Software Engineering
GUI Graphical User Interface
KPI Key Performance Indicator
PPM Process Performance Metric
QA Quality Assurance
QoS Quality of Service
ROIA Real-Time Online Interactive Applications
SC Service Composition
SC&C Service Composition and Coordination
SI Service Infrastructure
SLA Service Level Agreement
SN Service Network
SOA Service Oriented Architecture
SOSE Service-Oriented System Engineering
TSE Traditional Software Engineering

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 7

1 Introduction

1.1 Overview of the deliverable
This deliverable reports and summarizes the published joint research publications from JRA-1.1. More

specifically it reports ten papers produced from partner collaborations in JRA1.1 over the last

reporting period. In contrast to the larger numbers of papers reported from this activity in previous

periods that described technical research advances, the papers reported in this deliverable are on

broader themes that will enable the effective exploitation and uptake of the earlier research. Four of

the ten papers report research into the challenges that enterprises face to migrate to service-oriented

technologies and the challenges posed by global software development for service-oriented computing

in this expansion. The remaining six provide principles and foundations for service-oriented

computing, and an application of the S-Cube life-cycle model to cloud computing applied to real-time

interactive applications. The rest of this section reports these new research outcomes in more detail,

and where relevant links them to the JRA1.1 research challenges associated initially reported in

deliverable CD-IA3.1.3.

The deliverable contains three research papers that focus on the relationship between global software

development and service-oriented architectures. In the first, entitled Using the cloud to facilitate
GSD challenges, we report new challenges that global software development poses. With the

expansion of national markets beyond geographical limits, success of any business often depends on

using software for competitive advantage. Furthermore, as technological boundaries are expanding,

projects distributed across different geographical locations have become a norm for the software

solution providers. Nevertheless, when implementing Global Software Development (GSD),

organizations continue to face challenges in adhering to the development life cycle. The advent of the

internet has supported GSD by bringing new concepts and opportunities resulting in benefits such as

scalability, flexibility, independence, reduced cost, resource pools, and usage tracking. It has also

caused the emergence of new challenges in the way software is being delivered to stakeholders.

Application software and data on the cloud is accessed through services which follow SOA (Service

Oriented Architecture) principles. In this paper, we present the challenges encountered in globally

dispersed software projects. Based on goals mutually shared between GSD and the cloud computing

paradigm, we propose to exploit cloud computing characteristics and privileges both as a product and

as a process to improve GSD.

In the second paper, entitled Going global with agile service networks (ASNs), we report that ASNs

are emergent networks of service-based applications (nodes) which collaborate through agile (i.e.

adaptable) transactions. Global software engineering (GSE) comprises the management of project

teams distanced in both space and time, collaborating in the same development effort. The GSE

condition poses challenges that are both technical (e.g. geo-localization of resources, information

continuity between time zones, etc.) and social (e.g. collaboration between different cultures, fear of

competition, etc.). ASNs can be used to support global software engineering and build an adaptable

social network (ASNGSE) supporting the collaborations (edges of ASNGSE) of GSE teams (nodes of

ASNGSE). Agile Service Networks can be used to support Global Software Engineering (GSE). This

work contributes to overcoming the research challenge to support agile service networks with context

modeling. In the third paper, entitled Global software engineering: coordinating organizations or
skills?, we report on organisational challenges related to GSE. We mapped 25 GSE organizational

challenges on results from a systematic literature review of organizational social structures, and found

that the GSE condition creates a social structure in which project teams – which are distanced in both

space and time - are aggregated into a network of practice shaped as a knowledge community of

formal groups. Through this mapping a series of social structure requirements are extracted, and we

found that new requirements concern skills’ retrieval, visibility and shaping. This trend indicates that

governance focus in GSE should be shifted towards skills rather than organizations. We also found

that some organizational challenges are left unmatched. This indicates that further research should be

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 8

invested in constructing an ad-hoc social structure, hybrid of current organizational social structure

types, to match all organizational challenges.

Two related papers report challenges facing the uptake of and migration to service-oriented computing

in industry. Both contribute new S-Cube knowledge to overcome the established research challenge

identification of best practices for SOA migration. In the first, entitled The how and why of SOA
migration in industry, we report that the migration of legacy software to service-based systems is an

increasingly important problem area. So far, many SOA migration approaches have been proposed in

both industry and academia. There are, however, considerable differences between SOA migration

approaches defined in academia and those emerged in industry. This difference pinpoints a potential

gap between theory and practice. To bridge this gap, we conducted an industrial interview survey in

seven leading SOA solution provider companies. Results have been analyzed with respect to migration

activities, the available knowledge assets and the migration process. In addition, industrial approaches

have been contrasted with academic ones, hence discussing differences and promising directions for

industry-relevant research. As a result we found that, in fact, all companies converge to one common

SOA migration approach. This suggests that, with experience, enterprises mature toward a similar

approach to SOA migration. The second paper is entitled A survey of SOA migration in industry. In

industry, enterprises have many software systems to be modernized and made available as added-value

services. The identification of migration strategies and practices for service engineering is critical for

successful legacy migration, and SOA adoption in industrial setting. This paper presents the results of

an interview survey on the migration strategies in industry. The purpose of this paper is two-fold: 1) to

discover the migration strategies that industrial practice adopts, and: 2) to identify the uses of making

such strategies explicit. Results of the survey have been analyzed with respect to migration activities,

the available knowledge assets and the migration process. As a result we found that, in fact, all

companies converge to the same, one, common SOA migration strategy. In addition, the uses of the

strategy pinpoint promising industry- relevant research directions.

In the paper entitled Using a lifecycle model for developing and executing real-time online
applications on clouds, we describe how the generic lifecycle model developed in the S-Cube project

for the design and management of service-based applications (SBA) can be utilized in the context of

cloud computing and Real-Time Online Interactive Applications (ROIA). In particular, we focus on

the fact that the Infrastructure-as-a-Service approach enables the development of ROIA, which include

multi-player online computer games, interactive e-learning and training applications and high-

performance simulations in virtual environments. We illustrate how the lifecycle model expresses the

major design and execution aspects of ROIA on clouds by addressing the specific characteristics of

ROIA: a large number of concurrent users connected to a single application instance, enforcement of

Quality of Service (QoS) parameters, adaptivity to changing loads, and frequent real-time interactions

between users and services. We describe how our novel resource management system RTF-RMS

implements concrete mechanisms that support the developer in designing adaptable ROIA on clouds

according to the different phases of the lifecycle model. Our experimental results demonstrate the

influence of the proposed adaptation mechanisms on the application performance. The paper directly

contributes new S-Cube knowledge to overcome the challenge definition of a coherent life cycle for

adaptable and evolvable SBA and measuring, controlling, evaluating and improving the life cycle and

the related processes.

The final four research papers address services and service-based applications adaptation. In the paper

entitled Managing evolving services, we motivate the need for a methodology to manage changes and

variations so that impacted services in a service chain are appropriately (re-)configured, aligned and

controlled. We outline sources and impact of change for services, review the concept of evolution in

software and services, and hone in on adaptation as a mechanism for addressing service evolution. We

report that due to services’ strongly encapsulated and loosely coupled nature, compatibility and

versioning become important mechanisms for enabling the seamless update of a service without

affecting its existing consumers. However, since such changes are not always possible, we introduce a

change-oriented service lifecycle capable of handling functional (structural and behavioural), non-

functional, policy-induced and operational changes in order to support service developers to consider

the scope and impact of changes and weigh their outcome against the effort and resources required to

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 9

apply them. In the paper entitled Addressing highly dynamic changes in service-oriented systems:
towards agile evolution and adaptation, we set out to introduce relevant foundations concerning

evolution and adaptation of service-oriented systems. The paper starts by sketching the historical

development of software systems from monolithic and mostly static applications to highly-dynamic,

service-oriented systems. Then, it provides an overview and more thorough explanation of the various

kinds of changes that may need to be faced by service-oriented systems. To understand how such

changes could be addressed, the chapter introduces a reference service life-cycle model which

distinguishes between evolution, i.e. the manual modification of the specification and implementation

of the system during design-time, and (self-)adaptation, i.e. the autonomous modification of a service-

oriented system during operation. Based on the discussion of the key activities prescribed by that life-

cycle, the chapter elaborates on the need for agility in both adaptation and evolution of service-

oriented systems. Finally, in the paper entitled A variable context model for adaptable service-
based applications, we present an adaptive approach to context modelling for adaptable SBAs.

Context can be defined as characteristic information that is relevant to the interaction between a user

and an application; it is an important factor for the selection of services and the execution of SBAs that

can adapt to changes in a user’s context and, consequently, changes in their requirements for the

application. A context model enables the identification of context information to be collected and

monitored, but the relevant contextual information may itself vary with the context. To address this,

we propose granular analyses of context data and an approach to context modelling that is adaptive

depending on the current situation. In the paper entitled Exploiting codified user task knowledge to
discover services, we describe at length a mechanism for adapting service discovery to different user

tasks, then report a first evaluation of the mechanism using precision and recall measures. The paper is

a substantial journal extension to a paper first described as part of the year-3 deliverables. The results

revealed that the service discovery algorithm extended with user tasks was more effective than the

original algorithm under certain conditions. Whilst extending service discovery with user task models

improved performance over keyword-based algorithms, it did not increase performance over an

algorithm using sophisticated word sense disambiguation and term expansion algorithms from

information retrieval. This result has implications for the relative cost-effectiveness of using user task

models in service-based application development over other, potentially cheaper approaches.

The remainder of the deliverable is structured as follows. Section 1.2 describes the relationships

between the research presented in this deliverable and other S-Cube work packages. Section 2

describes the research work carried out; table 1 (below) shows the correspondence between its

subsections, corresponding research papers, and their topics. Section 3 concludes the report and relates

the presented contributions to the challenges defined for the work package.

Main topic Paper title

Section

S-Cube life cycle • Using a Lifecycle Model for Developing and Executing

Real-Time Online Applications on Clouds

2.1

Adaptation and

Evolution

• Addressing highly dynamic changes in service-oriented

systems: Towards agile evolution and adaptation

• Managing evolving services

• A Variable Context Model for Adaptable Service-Based

Applications

• Exploiting Codified User Task Knowledge to Discover

Services

2.2

Global software

development

• Using the Cloud to Facilitate Global Software

Development Challenges

• Going Global with Agile Service Networks

• Global software engineering: coordinating organizations

or skills?

2.3

SOA migration
• A Survey of SOA Migration in Industry

2.4

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 10

• The How and Why of SOA Migration in Industry
Table 1. Research contributions presented in this deliverable

1.2 Relationships with other work packages
The contributions summarized in this deliverable can be related to research carried out in other S-Cube

work packages as follows:

• The research presented in Section 2.1 relates to IA 3.1 which defines the reference life-cycle;

it further contributes to IA 3.2 which compiles usage scenarios of S-Cube results, and

validates those results, as well as to JRA 1.2 for the adaptation mechanisms presented.

• The research presented in Section 2.2 contributes to JRA 1.2 for the adaptation principles and

mechanisms presented, and to JRA 1.1 for the application of agile methods for the

development of adaptable SBAs.

• The research presented in Section 2.3 contributes to JRA 1.2 as it proposes agile context

awareness strategies for adaptation, and JRA 2.1 as it focuses on supporting business

processes.

• The research presented in Section 2.4 contribute to IA 2.2 as it focuses on European industry

practices.

2 Research contributions

2.1 Exploiting the S-Cube life-cycle

Using a lifecycle model for developing and executing real-time online applications on
clouds
Service-oriented applications are developed for constantly changing environments with the

expectation that they will evolve over time. Several service-oriented system engineering (SOSE)

methodologies have been proposed aiming at providing methods and (sometimes) tools for researchers

and practitioners to engineer service-oriented systems. SOSE methodologies are more complex than

traditional software engineering (TSE) methodologies: the additional complexity results mainly from

open world assumptions, co-existence of many stakeholders with conflicting requirements and the

demand for adaptable systems. A number of service lifecycle models have been proposed by both

industry and academia. However, none of the proposed models has either reached a sufficient level of

maturity or been able to fully express the aspects peculiar to SOSE. Within the S-Cube project a new

Lifecycle Model was designed that combines existing techniques and methodologies from TSE and

SOSE to improve the process through which service-based applications will be developed.

This paper extends our previous work on studying how the S-Cube Lifecycle Model can be applied on

the emerging and challenging domain of Real-Time Online Interactive Applications (ROIA) including

multi-player online games, high-performance simulations, e-learning applications, etc. In particular,

we study how to use server resources economically, which is difficult due to continuously changing

user numbers.

Cloud Computing with its Infrastructure-as-a-Service (IaaS) approach offers new opportunities for

ROIA execution and promises a potentially unlimited scalability by distributing application processing

on an arbitrary number of resources given suitable adaptation mechanisms. Clouds allow for

adding/removing resources on demand. This opens for ROIA an opportunity to serve very high

numbers of users and still comply with QoS demands. Despite a variable number of users, Cloud

resources can be used efficiently if the application supports adding/removing resources during

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 11

runtime. Hence, using Cloud Computing for resource provision and the Lifecycle model for

implementing adaptable ROIA complement each other.

This paper studies how Cloud Computing and the S-Cube Lifecycle Model can be utilized for ROIA

applications. We illustrate how the Lifecycle Model expresses the major design and execution aspects

of ROIA on Clouds and present our novel resource management system RTF-RMS that implements

concrete mechanisms for ROIA development and adaptation according to the Lifecycle. We report

experimental results on the influence of the proposed adaptation mechanisms on the application

performance.

2.2 Supporting SBA evolution and adaptation

Addressing highly dynamic changes in service-oriented systems: towards agile evolution
and adaptation

Modern software technology has enabled us to build software systems with a high degree of

flexibility. The most important development in this direction is the concept of service and the Service-

oriented Architecture (SOA) paradigm. A service-oriented system is built by “composing” software

services (and is thus also called “service composition” or “composed service” in the literature).

Software services achieve the aforementioned high degree of flexibility by separating ownership,

maintenance and operation from the use of the software. Service users do not need to acquire, deploy

and run software, because they can access its functionality from remote through service interfaces.

Ownership, maintenance and operation of the software remains with the service provider. While

service-orientation offers huge benefits in terms of flexibility, service-oriented systems face yet

another level of change and dynamism. Services might disappear or change without the user of the

service having control over such a change. Agility, i.e., the ability to quickly and effectively respond

to changes, will thus play an ever increasing role for future software systems to live in the highly

dynamic “world” as sketched above. Agility can be considered from two view- points:

• First, agility may concern the evolution of the system. This means that it concerns the

development process and how engineering activities (such as requirements engineering and

implementation) should be performed to timely address changes by evolving the software;

• Secondly, agility may concern the adaptation of the system. This means that it concerns the

system itself and how the system should respond to changes. Agility in adaptation is typically

achieved through self- adaptation, i.e., the autonomous modification of a service- oriented

system during operation.

This work sets out to introduce relevant foundations concerning evolution and adaptation of service-

oriented systems. It starts by sketching the historical development of software systems from

monolithic and mostly static applications to highly-dynamic, service-oriented systems. Then, it

provides an overview and more thorough explanation of the various kinds of changes that may need to

be faced by service-oriented systems. To understand how such changes could be addressed, the

chapter introduces a reference service life-cycle model which distinguishes between evolution, viz. the

manual modification of the specification and implementation of the system during design-time, and

(self-)adaptation, viz. the autonomous modification of a service- oriented system during operation.

Based on the discussion of the key activities prescribed by that life-cycle, the chapter elaborates on the

need for agility in both adaptation and evolution of service-oriented systems.

Managing evolving services
Services are subject to constant change and variation, leading to a continuous service re-design and

improvement effort. Service changes originate from different sources such as introducing new

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 12

functionalities to an existing service, modifying the current functionality of a service in order to

improve its performance, or including new regulatory constraints requiring a change of the behavior of

services. Such changes lead to a continuous service re-design and improvement effort. However, they

should not be disruptive by requiring radical modifications in the very fabric of services, or the way

that business is conducted between service providers and consumers.

With the term service evolution we refer to the continuous process of development of a service

through a series of consistent and unambiguous changes. The evolution of services is expressed

through the creation and decommissioning of service versions during their lifetime. These versions

have to be aligned with each other in a non-disruptive manner and in a way that allows a service

designer to track the various modifications and their effects on the service in terms of consistency.

Looking at the effect that service changes have on their consumers in the Service Oriented

Architecture (SOA) paradigm, we can classify them as shallow and deep. Shallow changes are

incremental changes, localized to one service and restricted to the consumers of the service. Such

incremental changes are based on the notion of compatibility between service versions to allow for a

seamless and transparent to the service clients update of the service. Shallow changes therefore require

a robust versioning scheme and an unambiguous definition of compatibility in order to be managed

efficiently. Deep changes, on the other hand, are transformational changes, cascading beyond the

clients of the service and potentially to entire end-to-end service networks. As such, they require a

change-oriented service development methodology that considers the scope, effect, effort and

applicability of such changes in across enterprise environments and throughout entire service chains.

Despite its connections with component evolution, service evolution poses a number of additional

challenges due to the strongly encapsulated and loosely coupled systems (i.e. services) that it deals

with. In this context, service compatibility and versioning become important mechanisms for enabling

the seamless update of a service without affecting its existing consumers. Such changes are not always

possible however. In this case it is required of service developers to consider the scope and impact of

the change and weigh the outcome against the effort and resources required for applying it. A

systematic change-oriented service lifecycle should be used for this purpose. Describing the key

concepts in dealing with evolving services, we provide a sound foundation for a change-oriented

service lifecycle to spread changes in an orderly fashion so that impacted services in a service-chain

are appropriately (re-)configured, aligned and controlled as the changes occur.

A variable context model for adaptable service-based applications
Context is defined as: “any information that can be used to characterize persons, places or objects that

are considered relevant to the interaction between a user and an application, including users and

applications themselves”. Context should be taken into account for service selection. For example, the

service that informs a sailorman about the weather forecasts on a specific route should be very detailed

and focused on the conditions of the sea and of winds, while the service dedicated to a family willing

to decide if to book a trip on the seaside should be focusing on the weather conditions of a specific

place, typically, on a longer time scale.

More generally, service-based applications should be able to adapt the execution flow to address

changes of the execution context. For example, applications have to be flexible in order to satisfy

users’ variable requirements on the basis of the situation (e.g., geographical position, time) in which

users are when they access the application.

A first goal of this paper is to provide a novel context model for adaptable service-based applications

and to point out to its role in the adaptation activities. The context model is the basis for the definition

of triggers enabling adaptation or evolution of service-based applications and enables the identification

of the information that has to be collected and monitored at run-time. We propose an approach to

context modeling which is itself adaptive to the current situation. In fact, the relevant contextual

information might be different in different situations: for instance, the information needed about a

location may be different depending on the location (e.g., a small village vs a large town), or

depending on the user who is interacting with the application (e.g., a user who knows a location well

vs a user who is not familiar at all with the location). In these cases the way the application behaves

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 13

might vary not only according to the context in general, but according to the representation of the

context itself that is variable in the different situations.

Context data are gathered by using different kinds of sensors. An important issue is to understand the

level of granularity at which to collect data. The level of granularity is defined by the amount of

details to catch for representing the significant characteristics of the environment for a given

application. In fact, it is convenient to avoid the collection of unnecessary details of data that are not

suitable to catch changes in the execution context. For example, in case of emergency situations, it is

necessary to collect data values every second in order to have a fine control of the situation, while in

other situations a daily value is enough since a more frequent measure of context data does not provide

any additional relevant information. In location-based applications, in some cases, coarse information

about the location (e.g. a country) may be sufficient, while in other cases it is important also to be

aware of the regional context.

As a result of the previous considerations, another goal of this paper is to address the issue of the

granularity of monitored context data and to propose a way to support adaptation, by analyzing context

data at different granularities and using a proactive approach to establish the adaptation needs and the

dynamic invocation of the services.

Exploiting codified user task knowledge to discover services
This research developed a new software-based algorithm for adapting service discovery to different

user tasks, then reported a first evaluation of the mechanism using precision and recall measures. The

paper is a substantial journal extension to a paper first described as part of the year-3 deliverables. The

results revealed that the service discovery algorithm extended with user tasks was more effective than

the original algorithm under certain conditions. Whilst extending service discovery with user task

models improved performance over keyword-based algorithms, it did not increase performance over

an algorithm using sophisticated word sense disambiguation and term expansion algorithms from

information retrieval. This result has implications for the relative cost-effectiveness of using user task

models in service-based application development over other, potentially cheaper approaches.

In detail we report the development and codification of user task models developing using the

Concurrent Task Trees (CTT) approach and their application to service discovery in one environment

developed to design service-based applications. The user task models were developed at the class-level

(e.g. drive to a destination) to maximize the leverage of each model during service discovery – one

model could potentially be exploited during the design of all service-based applications that instantiate

that task class (e.g. drive from London to Paris via the Channel Tunnel). The codified user task models

were documented in a searchable catalogue, then service queries were generated and fired at a service

repository. An empirical evaluation explored the effect of modifying service queries with codified user

task models on the precision and recall of one service discovery engine.

The algorithm for service discovery based on user task models was trialed against an existing service

discovery algorithm that could be configured to different settings. Evaluation data was to accept or

reject four research hypotheses that informed the experiment. Results revealed that extending rather

than replacing service queries with additional knowledge about user tasks did improve the overall

effectiveness of service discovery. However, the reformulation of service queries with knowledge

about user tasks did not decrease the number of irrelevant services retrieved by the service discovery

engine. We partially accepted the hypothesis that the reformulation of service queries with knowledge

about user tasks would increase the number of relevant services retrieved by a service discovery

engine in some but not all conditions. We also partially accepted the hypothesis that the reformulation

of service queries with knowledge about user tasks would improve the overall correctness of services

retrieved by a service discovery engine, again in some but all conditions. These complex results reveal

that context knowledge about the user task expressed as class-level user task models improved service

discovery, but no more than current other sophisticated service discovery algorithms do. They raise

implications about the overall cost-effectiveness of the role of user task models in service-based

application development and use that are explored in the paper.

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 14

2.3 Supporting global software development

Using the cloud to facilitate global software development challenges
The expansion of software and service markets beyond geographical limits has given rise to use of

software for competitive advantage. Furthermore, expanding technological boundaries have changed

the way software and business solutions are developed; the advent of internet for instance has brought

in new methodologies that result in business advantages and reduced costs, but organizations very

often face difficulties due to global distance and the involvement of development teams which are

geographically distributed. Advances in technology and communication channels have made business

organizations to outsource software development operations in multiple geographical locations as the

exchange of information has become more accurate and available. However, outsourcing development

operations to organizations at various outsourcing destinations is not an easy and straightforward task.

While implementing Global Software Development (GSD), software organizations continue to face

challenges in adhering to the development life cycle. It has also caused the emergence of new

challenges in the way software is being developed and delivered to the stakeholders. GSD is software

development incorporating teams spread across the globe in different locations, countries, and even

continents. The business models in low cost countries have provided with capable and cheap work

force to reap the benefits of outsourced and offshore software development. With the emergence of

technologies in a world which has become increasingly globalized, the relationship between culture

and management of remote work has become an unavoidable issue which needs to be addressed.

Because of distance among the software development teams, GSD encounters certain challenges in

terms of collaboration, communication, coordination, culture, management, organizational,

outsourcing, development process, development teams, and tools.

In order to conduct this research, our literature review studied characteristics of services (both SOA

and the cloud). We also identified challenges faced by GSD and held a workshop, attended by all of

the authors of this paper, each of whom has research and/or industrial expertise in GSD and/or SOA.

During this workshop, through interactive discussion and brainstorming, we developed the concepts

presented in this paper. To do this, we summarized the GSD challenges and requirements and

investigated the potential of SOA based cloud services to address these.

Collaboration

Challenges

Issues Negative Impact on

Software Project

Facilitating GSD Using Services (SOA/Cloud

)

Geographic Distance Time

Knowledge

transfer Tools

Communication gaps

Project Delays Ambiguity

on technical aspects

Unequal quality levels

across the software

development sites

Dynamic binding, runtime adaptation, and

timely availability of required services could

help dealing with geographic issues. Also,

availability of SaaS could diminish installation

overheads at each development location.

Cultural Unequal

distribution of

work Lack of

Trust, Fear

Increase in cost Poor skill

management Reporting

problems

Service could maintain a fair distribution of

work between the teams. Only a specific

person will be responsible for the task

assigned to thus skill management would be

easier too.

Linguistics Frequency of

communication

Knowledge

transfer

Loss in project quality

Invisibility on project

development Ineffective

project management

Run time evolution of services can meet with

the linguistic issues. Also, isolation of each

task and related information as a service can

ensure right level of knowledge transfer.

Temporal Lack of

Motivation

Less visibility

Loss in project quality

Poor management of

configuration Chances of

The cloud service models imply that the data

resides on a centralized location where

inventory of services is maintained. Services

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 15

Risk project artifact loss maintain a registry where all of them are

stored. This attribute could be used to store

and retrieve configurations.

Table 2. GSD challenges possibly facilitated by the use of services

We identified different challenges associated with GSD and suggested the likelihood of using the

cloud paradigm to address them. Different GSD development activities were figured out; since

information and data on the cloud is transmitted and shared by means of web services which work on

underlying SOA principle, we take advantage of its benefits like loose coupling, service composition,

and negotiation to facilitate software development practices across multiple development sites in light

of different cloud service models that include IaaS (Infrastructure as a Service), PaaS (Platform as a

Service), and SaaS (Software as a Service) and its characteristics like scalability, performance,

virtualization, and reduced costs .

Virtualization Courtesy of this privilege, cloud providers can enhance their infrastructure to accommodate

in case there is growing demand for services. Usually, a combination of hardware and
software are used on the provider side to meet with the scaling requirements.

Reduced Cost Costs in the cloud do not include server side infrastructure and equipment costs. Moreover,
pay as you go model ensures that subscribers are bound to pay for only those resources
which they use. In short, the distribution costs of software are reduced.

Scalability On-demand provision of application software provides scalability, which results in greater
efficiency. Whereas cloud based application development platforms provide with high level
of scalability thus making the developed application to coup with the fluctuation demands.

Infrastructure Providers’ applications are run on a cloud infrastructure from where a consumer can access

those. Similarly,
consumer-modified information or application can be deployed on the same infrastructure as
well. The privilege is that the consumer does not have to deal with the underlying
infrastructure.

Performance The cloud paradigm can support various levels of performance requirements like service
scaling, response time, and availability of the application based on the needs of the
consumers. In addition indirect performance measures may also be achieved by eliminating
the overheads involved with installation procedures and reduction in unnecessary reduction
among the applications running on the cloud

Multi
Tenancy
Support

Public clouds are elastic in nature as their consumers are not limited. More importantly,

consumers’ workloads are isolated to provide privacy. However, the number of consumers
can be restricted by opting out a specific deployment model.

Table 3. Supporting characteristics of cloud computing for GSD

In addition, we consider an example scenario to understand the GSD collaboration challenges that

could be minimized using the cloud paradigm. We suggest that using a cloud paradigm will result in

GSD benefitting from the cloud’s infrastructure, platform, and provision of software as a service

features. We do not argue that the cloud paradigm can fully serve the purpose but we do believe that,

if designed correctly, GSD can be successfully supported by services. Although the work to date have

already laid some solid foundations, we are embarking on further research to understand whether these

indeed can be of value to both the industrial and research communities.

Going global with agile service networks
A fundamental similarity can be identified between GSE and ASNs. Both stem from business

decisions. Moreover, a crucial complementarity exists between them. On one side, GSE needs

dynamism among nodes (development teams) and their collaboration towards business gain (timely

delivery). On the other, ASNs are supporting dynamic collaborations among nodes which are teaming

up to increase business gain.

Based on these considerations, we argue that GSE challenges can be overcome through an ASN-based

social network (ASNGSE) providing agility of communications and collaborations (edges of

ASNGSE) to globally located IT professionals (nodes of ASNGSE). Global professionals can be

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 16

represented as nodes in an agile (i.e. adaptable and emergent) organizational social network to deliver

the final product, just-in-time and sufficiently-good.

Distances in time and space make it impossible for GSE teams to communicate and coordinate their

effort in an efficient manner. How can ASNs be used to support GSE?

The solution we advocate is an ASN-based social network (ASNGSE). This technology should exhibit

four key characteristics:

1) Agile context awareness. ASNs are able to detect changes in the context and dynamically

support different scenarios as needed. In GSE for instance, round-the-clock productivity could

be supported by dynamically allocating collaborations between teams, by modeling each

developer as a set of skills and allowing for their seamless (re-)allocation based on their

timezone, location and needs. Also, seamless handoff of relevant informations between two

contiguous timezones could be used to ease the coordination of sequential or dependent work

packages.

2) Deployed in the cloud. Cloud computing, has potentials which fit with GSE needs. For

instance, GSE resources rendered available in the cloud allow for rapid resource location and

access on a global scale. Also, communication and information continuity between timezones

may be requested as needed.

3) Satisfying GSE social requirements. GSE teams together create an Organizational Social

Structure (OSS) [3], part of a global corporation. Social interactions in OSSs depend on

personal- or corporate-specific practices, which include work habits, methods, technologies to

support cooperation, etc. In GSE, for instance, supporting social interactions among

developers from different companies and cultures, would require letting them use own tools,

languages and own methods seamlessly. ASNs can help in doing that through adaptable

creation of service compositions or transparent information proxying (i.e. providing seamless

switching between answering nodes in case of difficulty). Another example could be using

ASNs to autonomously try and assemble a common tool workbench for all teams. Lastly, an

ASN to support GSD could compute the work allocation to teams, using (up-to-date and

context-aware information) on project requirements, time constraints, current availability, etc.

4) Project-centric as well as People-centric. Enterprise Social Networking technologies already

exist which could potentially represent (and supporting) the social network of an entire

corporation. What is still missing is the dynamic / automatic adjustment of its granularity, to

support the global software development project (against its changing context) as well as the

people involved (e.g. technicians, developers, managers, etc.). Moreover, none of these

technologies provide flexible and adaptable collaboration channels (e.g. adaptable status-

tracking, always-on reachability of key roles, worldwide project chatter, etc.) among

professionals collaborating in the same GSE effort.

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 17

Figure 1. ASNs for GSD

We plan to develop a very initial version of a prototype for the proposed social-networking ASN for

GSE, to initiate industrial action-research validation.

Global software engineering: coordinating organizations or skills?
Global Software Engineering (GSE) and service-oriented development are strongly related even

though this relation has not been recognized yet in the literature.

GSE is a business decision which entails project teams to collaborate globally on the same project, in

different timezones and continents. The need of this collaboration may come from various reasons

ranging from the inherently decentralized organization of many multinational companies to the

opportunity of exploiting some existing skills available in third countries, to the need of tailoring

services to specific local regulations, to the possibility of incorporating existing delocalized services.

The literature on GSE is focusing on addressing the many process and organizational challenges that

arise in this setting and highlights the problems that are introduced by the spatial, temporal and

cultural distances that inevitably occur within the global teams.

While the SBAs literature in most cases disregards the organizational problems and focuses mainly on

technological issues, the development of a SBA where services are owned and operated by third

parties is undoubtedly a GSE issue and, as such, it is appropriate to understand how GSE is declined in

this specific case.

As part of the current work we propose an initial profile of the GSE Organizational Social Structure

(OSS), using empirical data. We conducted a systematic literature review into OSS types and

attributes; in addition, we used a set of 25 organizational challenges stemming from previous action

research in the GSE field. Mapping GSE challenges on OSS types we found that the GSE social

structure is the mix of four types identified in literature, namely: project teams, networks of practice,

knowledge communities and formal groups (see Figure 2).

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 18

Figure 2. OSS types: project team aggregates

By analyzing the characteristics of these OSSs and the known challenges for GSE we found out that

while the current literature has deeply investigated the problem of coordination within the global team,

the governance of skills in the global team is still an open research area that requires specific attention

(see Table 4).

Factor Description
Communication the challenge here is in terms of communication. How open it should be? how

should it be enforced or maintained?
Communication
Tools

the challenge here is what tools shold be used. what communication paradigm
should be considered and so on

Temporal Issues the challenge here is how should round-the-clock productivity be maintained?
how should a tool support this maintenance?

Effective
Partitioning

how should work be split and spread across teams in different timezones /
continents?

Skill Management How should the work be spread in terms of skills?
Knowledge Transfer how should knowledge sharing be nurtured?
Defined Roles /
Responsibilities

how should roles and responsibilities be allocated to different engineers /
skills across the project teams?

Team Selection how should members in the teams be selected?
Motivation how should motivation of GSD engineers be monitored and maintained?
Technical Support what kind of technical support tools or specialized engineers should be

deployed to maximize productivity?
Coordination what kind of coordination issues might rise (for the specific project)?
Cooperation what kinds of cooperation practices can be put in place (for the specific

project)?
Culture what kind of cultural practices should be considered / maintained?
Teamness what team building practices should be put in place? how should teamness be

maintained?
Visibility how should visibility of the project be maintained? how should awareness be

kept high?
Trust what trust dynamics should be envisioned? what mechanisms should be put

in place to maintain them?
Fear what social fears might rise (for the specific project)? what kind of fear-

fighting practices should be put in place?
Project Management what tasks should be allotted to management? what should be allotted to local

roles?
Effective
Partitioning

how should work be split and spread across teams in different timezones /
continents?

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 19

Risk Management what risk management policies should be put into practice? what changes in
the context might compromise GSD operativity?

Language how should language difference be mitigated?
Selection tools what tools should be made available to engineers? what should be the full

technical space?
Information what kind of information is to be created / shared / maintained?
True Cost what is the estimated post-mortem cost of the project in any given moment of

time?
Reporting Process what kind of reporting should be procured for the GSD attempt? how should

the software architecture be documented? how should the implementation be
documented? what kind of process should be followed to maximize GSD
effectiveness?

Table 4. 25 organisational factors in GSD

As part of the work we also explored current Enterprise Social Networking (ESNs) tools to see the

extent to which they can be used to enable skills awareness within the global team.

2.4 SOA migration in practice
Service Oriented Architecture (SOA) migration from legacy systems to service-oriented software is

not new. Many methods do exist, originated in both academia and industry. Companies have extensive

experience in both in-house migration of their own legacy information systems to a more agile,

reusable service-oriented paradigm, and consultancy migration to support customer organizations to

port their systems to modern service-oriented technologies, make them available as added-value

services, often with the goal of creating new market opportunities.

Many SOA migration approaches have been developed in both industry and academia. Nevertheless,

we have observed that the industrial approaches are considerably different from the ones originated in

academia. By discussing this observation with practitioners we were suggested that such differences

might pinpoint an undesired gap between theory and practice. It is essential to fill this gap to devise

solutions that fit the goals and problems of industry. This need was further emphasized most recently

in a panel on ``What Industry Wants from Research'' in ICSE 2011. The general consensus among the

panel members was that there is a need to better understand the fundamental problems, goals,

strategies and weaknesses of practice.

Figure 3. Research context

To gain an understanding on industrial migration strategies, we conducted an industrial interview

survey in seven leading SOA solution provider companies. With the objective of understanding the

industrial migration approaches, we designed and executed the interviews. As a result we found that

despite the diversity of participating enterprises, they all converged to the same, one, common SOA

migration strategy: all use similar input knowledge, similar activities, and sequences of activities to

carry out migration. This suggests that with experience enterprises mature toward a similar migration

approach. This would also confirm the SOA migration maturity level of Gartner Hype Cycle as being

in early main stream phase. In addition, and unlike the majority of academic approaches, SOA

migration in industry mostly neglects reverse engineering. Rather, migration follows a forward

engineering process initiated by identifying the ideal state (e.g. ideal business services), which is taken

as a reference to extract and transform legacy elements to services.

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 20

The panel of experts following the interview survey investigated the benefits of such overall strategy.

The panel envisioned to use this strategy as a general tool to guide and steer migration projects. We

further elicited a list of extensions to such tool, that would address the recurring problems in industrial

migration, namely identification of the costs and risks of migration projects, and deciding on the best

migration approach to mitigate them. The overall approach with extensions that emerges from the

panel resembles the lean and mean approach of Kruchten, and draws interesting directions for

industry-relevant research.

In addition, we contrasted the industrial approaches with academic ones, which we identified from a

previous Systematic Literature Review (SLR) on SOA migration. Here we use the results of the SLR

to discuss the differences and draw promising directions for industry-relevant research listed below.

Migration approaches fitting activities carried out in industrial approaches. Migration activities that

industrial approaches carry out can act as a frame of mind confining the migration approaches that are

more aligned with practice. From that perspective, one would see that, for instance, the approaches

addressing wrapping the applications as a whole are more in-line with practitioners concerns,

compared to the ones addressing the automatic recovery of the legacy architecture. Hence, this frame

of mind pinpoints the types of industry-relevant research in SOA migration methodologies and

techniques.

To-Be driven migration approaches. Inadequate support for To-Be driven approaches in academia

highlights promising opportunities for research to focus on how to support To-Be driven migration.

For instance, future research can focus on addressing the following challenge of the practitioners: how

to systematically elicit and capture the migration drivers and how to shape the migration process using

those drivers.

Legacy understanding without reverse-engineering. Although reverse engineering is not covered in

industrial migration approaches (see Figure 4), elicitation of the knowledge about the legacy system is

crucial for a successful migration. In this regard, research can benefit practice by providing methods,

techniques, or guidelines that facilitate elicitation of migration-relevant knowledge from different

sources of such knowledge.

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 21

Figure 4. Three view Strategy Representation.

Legacy evaluation from multiple perspectives. Companies evaluate and extract the legacy assets for

migration to SOA by depicting their ideal services. This is, however, done in an ad-hoc manner, which

may hinder successful service extraction. An immediate concern calling for further research is how to

systematically evaluate pre-existing legacy assets based on different aspects of the ideal services.

3 Conclusions
The research presented in this deliverable contributes further towards the ultimate fulfillment of JRA-

1.1 challenges outlined in CD-IA-3.1.3 (First version of Integration Framework) and refined in CD-

IA-3.1.5 (Consolidated Revised Integration Framework):

• Definition of a coherent life cycle for adaptable and evolvable SBA and measuring,
controlling, evaluating and improving the life cycle and the related processes. The S-Cube

lifecycle is utilized in Section 2.1 to express key aspects of the engineering of ROIA

applications on clouds, and used as a foundation for the development of new mechanisms for

their development and adaptation. The research presented in Section 2.3 further draws on it by

its focus on software and services development life cycle phases, and on elements of the S-

Cube research framework across JRA-1 and JRA-2 - Engineering and Design and Service

Composition and Coordination. Finally, the research presented in Section 2.2. potentially

extends the lifecycle into a change-oriented service lifecycle for the management of evolving

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 22

services. As such we believe that these new research contributions at least in part plug

previous gaps in our understanding of and prescriptive guidance for delivering a complete life-

cycle for SBAs. Furthermore, given the layered approach used to generate these research

contributions, we believe that the latest research is coherent with previous results because it

builds on them;

• HCI and context aspects in the development of service based applications. The research

presented in Section 2.2, more particularly A variable context model for adaptable service-
based applications, focuses on enhancing the interaction between users and applications

through an improved context modeling and analysis supporting SBA adaptation activities. At

the end of S-Cube the substantial bodies of research in HCI has yet to have a significant

impact on service-oriented computing research and development. The contributions made in

S-Cube represent some of most substantive research in this direction. The attempt to develop a

rigorous model of the large number of context variables represents a sizeable advance in this

direction;

• Identify best practices for SOA migration. The work presented in Section 2.4 contribute to this

research by addressing the gap between theory and practice of SOA migration through an

industry survey and its analysis and contrast against academic practices. The resulting

understanding of current challenges in SOA migration practices will, we believe, lead to

important follow-on applied research and technology transfer activities amongst some of the

S-Cube partners. Furthermore, the SOA migration challenges are now widely recognized as an

impediment to research take-up in the field, and S-Cube has positioned itself as a valuable

source of information, as well as outlet, for example the forthcoming ICSE’2012 tutorial on

the subject;

• Support agile service networks with context modeling. The research presented in Section 2.3

on Going global with agile service networks directly addresses this challenge and lists agile

context awareness as a key characteristic of their proposed ASN-based social network being

prototyped. Clearly there is scope for more research post S-Cube in this direction, and again

the traction and motivation generated by some S-Cube research partners will mean that more

research to address context understanding that enables more agile future service networks will

take place.

To conclude this deliverable builds upon and consolidates research presented in previous JRA 1.1

deliverables. Furthermore, it contributes to cross-package research integration as it relates to work

carried out in other S-Cube work packages. We believe that this research offers the ideal springboard

for future SOA research in important, valuable directions.

